高二年級數(shù)學(xué)教案5篇
教學(xué)工作結(jié)束后,我們可以在原有教案的基礎(chǔ)上總結(jié)經(jīng)驗,如何用在下次的教案上。下面是小編給大家整理的高二年級數(shù)學(xué)教案模板5篇,歡迎大家來閱讀。
高二年級數(shù)學(xué)教案篇1
一、教材分析
【教材地位及作用】
基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對象為高二學(xué)生,本節(jié)課為第一課時,重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)進一步了解不等式的性質(zhì)及運用,研究最值問題奠定基礎(chǔ)。因此基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,它也是對學(xué)生進行情感價值觀教育的好素材,所以基本不等式應(yīng)重點研究。
【教學(xué)目標(biāo)】
依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實際情況,特確定如下目標(biāo):
知識與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會構(gòu)造條件使用基本不等式;
過程與方法目標(biāo):通過探究基本不等式,使學(xué)生體會知識的形成過程,培養(yǎng)分析、解決問題的能力;
情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識到數(shù)學(xué)是從實際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動手的良好品質(zhì)。
【教學(xué)重難點】
重點:理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。
難點:利用基本不等式推導(dǎo)不等式.
關(guān)鍵是對基本不等式的理解掌握.
二、教法分析
本節(jié)課采用觀察——感知——抽象——歸納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實際問題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率.
三、學(xué)法指導(dǎo)
新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動權(quán)還給學(xué)生,倡導(dǎo)積極主動,勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識,使學(xué)生成為學(xué)習(xí)的主人。
四、教學(xué)過程
教學(xué)過程設(shè)計以問題為中心,以探究解決問題的方法為主線展開。這種安排強調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對知識的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識。
具體過程安排如下:
(一)基本不等式的教學(xué)設(shè)計創(chuàng)設(shè)情景,提出問題
設(shè)計意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實”,現(xiàn)實情境問題是數(shù)學(xué)教學(xué)的平臺,數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實,并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實.基于此,設(shè)置如下情境:
上圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。
[問題1]請觀察會標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們在面積上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)
(二)探究問題,抽象歸納
基本不等式的教學(xué)設(shè)計1.探究圖形中的不等關(guān)系
形的角度----(利用多媒體展示會標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個直角三角形的面積之和小于或等于正方形的面積.)
數(shù)的角度
[問題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?
學(xué)生討論結(jié)果:。
[問題3]大家看,這個圖形里還真有點奧妙。我們從圖中找到了一個不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號什么時候成立呢?(師生共同探索)
咱們再看一看圖形的變化,(教師演示)
(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時等號成立。
設(shè)計意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識基本不等式。
2.抽象歸納:
一般地,對于任意實數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時,等號成立。
[問題4]你能給出它的證明嗎?
學(xué)生在黑板上板書。
[問題5]特別地,當(dāng)時,在不等式中,以、分別代替a、b,得到什么?
學(xué)生歸納得出。
設(shè)計意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來源,突破了重點和難點,而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
【歸納總結(jié)】
如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時,等號成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。
3.探究基本不等式證明方法:
[問題6]如何證明基本不等式?
設(shè)計意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識基本不等式到理性證明,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個不等式。
方法一:作差比較或由基本不等式的教學(xué)設(shè)計展開證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當(dāng)且僅當(dāng)a=b時,中的等號成立。
4.理解升華
1)文字語言敘述:
兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2)符號語言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時,。
[問題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時,等號成立”的含義是:
當(dāng)a=b時,取等號,即;
僅當(dāng)a=b時,取等號,即。
3)探究基本不等式的幾何意義:
基本不等式的教學(xué)設(shè)計借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過數(shù)形結(jié)合,賦予不等式幾何直觀。進一步領(lǐng)悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,
CD⊥AB,AC=a,CB=b,
[問題8]你能利用這個圖形得出基本不等式的幾何解釋嗎?
(教師演示,學(xué)生直觀感覺)
易證RtACDRtDCB,那么CD2=CA·CB
即CD=.
這個圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點C與圓心重合,即a=b時,等號成立.
因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.
4)聯(lián)想數(shù)列的知識理解基本不等式
從形的角度來看,基本不等式具有特定的幾何意義;從數(shù)的角度來看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.
[問題9]回憶一下你所學(xué)的知識中,有哪些地方出現(xiàn)過“和”與“積”的結(jié)構(gòu)?
歸納得出:
均值不等式的代數(shù)解釋為:兩個正數(shù)的等差中項不小它們的等比中項.
基本不等式的教學(xué)設(shè)計(四)體會新知,遷移應(yīng)用
例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計
(2)如圖:AB是圓的直徑,點C是AB上一點,設(shè)AC=a,CB=b,
,過作交于,你能利用這個圖形得出這個不等式的一種幾何解釋嗎?
設(shè)計意圖:以上例題是根據(jù)基本不等式的使用條件中的難點和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識,進一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時,等號成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。
(五)演練反饋,鞏固深化
公式應(yīng)用之一:
1.試判斷與與2的大小關(guān)系?
問題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?
2.試判斷與7的大小關(guān)系?
公式應(yīng)用之二:
設(shè)計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強對生活的關(guān)注,讓學(xué)生體會:數(shù)學(xué)就在我們身邊的'生活中
(1)用一個兩臂長短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實際重量輕了還是重了?
(2)甲、乙兩商場對單價相同的同類產(chǎn)品進行促銷.甲商場采取的促銷方式是在原價p折的基礎(chǔ)上再打q折;乙商場的促銷方式則是兩次都打折.對顧客而言,哪種打折方式更合算?(0≠q)
(五)反思總結(jié),整合新知:
通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗教訓(xùn)?還有哪些問題需要請教?
設(shè)計意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗教訓(xùn),鞏固知識技能,提高認(rèn)知水平.從各種角度對均值不等式進行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點,突破難點
老師根據(jù)情況完善如下:
知識要點:
(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征
(2)基本不等式在幾何、代數(shù)及實際應(yīng)用三方面的意義
思想方法技巧:
(1)數(shù)形結(jié)合思想、“整體與局部”
(2)歸納與類比思想
(3)換元法、比較法、分析法
(七)布置作業(yè),更上一層
1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計
2.書面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計
3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會有怎樣的不等式?
設(shè)計意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
五、評價分析
1.在建立新知的過程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識來分析問題、解決問題,以形成比較系統(tǒng)和完整的知識結(jié)構(gòu)。每個問題在設(shè)計時,充分考慮了學(xué)生的具體情況,力爭提問準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價值,對知識的理解和掌握在不斷的思考和討論中完善和加深。
2.本節(jié)的教學(xué)中要求學(xué)生對基本不等式在數(shù)與形兩個方面都有比較充分的認(rèn)識,特別強調(diào)數(shù)與形的統(tǒng)一,教學(xué)過程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對基本不等式得以深刻理解?!皵?shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會用的,只有學(xué)生通過實踐,意識到它的好處之后,學(xué)生才會在解決問題時去嘗試使用,只有通過不斷的使用才能促進學(xué)生對這種思想方法的再理解,從而達(dá)到掌握它的目的。
高二年級數(shù)學(xué)教案篇2
學(xué)習(xí)目標(biāo):
1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法
2、能敘述隨機變量的定義
3、能說出隨機變量與函數(shù)的關(guān)系,
4、能夠把一個隨機試驗結(jié)果用隨機變量表示
重點:能夠把一個隨機試驗結(jié)果用隨機變量表示
難點:隨機事件概念的透徹理解及對隨機變量引入目的的認(rèn)識:
環(huán)節(jié)一:隨機變量的定義
1.通過生活中的一些隨機現(xiàn)象,能夠概括出隨機變量的定義
2能敘述隨機變量的定義
3能說出隨機變量與函數(shù)的區(qū)別與聯(lián)系
一、閱讀課本33頁問題提出和分析理解,回答下列問題?
1、了解一個隨機現(xiàn)象的規(guī)律具體指的是什么?
2、分析理解中的兩個隨機現(xiàn)象的隨機試驗結(jié)果有什么不同?建立了什么樣的對應(yīng)關(guān)系?
總結(jié):
3、隨機變量
(1)定義:
這種對應(yīng)稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結(jié)果所組成的
到的映射。
(2)表示:隨機變量常用大寫字母.等表示.
(3)隨機變量與函數(shù)的區(qū)別與聯(lián)系
函數(shù)隨機變量
自變量
因變量
因變量的范圍
相同點都是映射都是映射
環(huán)節(jié)二隨機變量的應(yīng)用
1、能正確寫出隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機變量的描述隨機事件
例1:已知在10件產(chǎn)品中有2件不合格品?,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機變量的學(xué)案.這是一個隨機現(xiàn)象。(1)寫成該隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機變量來描述上述結(jié)果。
變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個隨機現(xiàn)象。若Y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機變量描述上述結(jié)果
例2連續(xù)投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數(shù),則X是一個隨機變
量,分別說明下列集合所代表的隨機事件:
(1){X=0}(2){X=1}
(3){X<2}(4){x>0}
變式:連續(xù)投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數(shù),則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結(jié)果.
練習(xí):寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結(jié)果。
(1)從學(xué)?;丶乙?jīng)過5個紅綠燈路口,可能遇到紅燈的次數(shù);
(2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現(xiàn)從中隨機取出3只球,被取出的球的號碼數(shù);
小結(jié)(對標(biāo))
高二年級數(shù)學(xué)教案篇3
選修Ⅱ
1.概率與統(tǒng)計(14課時)
離散型隨機變量的分布列。離散型隨機變量的期望值和方差。
抽樣方法??傮w分布的估計。正態(tài)分布。線性回歸。
實習(xí)作業(yè)。
教學(xué)目標(biāo):
(1)了解隨機變量、離散型隨機變量的意義,會求出某些簡單的離散型隨機變量的分布列。
(2)了解離散型隨機變量的期望值、方差的意義,會根據(jù)離散型隨機變量的分布列求出期望值、方差。
(3)會用隨機抽樣、系統(tǒng)抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。
(4)會用樣本頻率分布估計總體分布。
(5)了解正態(tài)分布的意義及主要性質(zhì)。
(6)通過生產(chǎn)過程的質(zhì)量控制圖了解假設(shè)檢驗的基本思想。
(7)了解線性回歸的方法。
(8)實習(xí)作業(yè)以抽樣方法為內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)解決實際問題的能力。
2. 極限(12課時)
數(shù)學(xué)歸納法。數(shù)學(xué)歸納法應(yīng)用舉例。
數(shù)列的極限。
函數(shù)的極限。極限的四則運算。函數(shù)的連續(xù)性。
教學(xué)目標(biāo):
(1)理解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。
(2)從數(shù)列和函數(shù)的變化趨勢理解數(shù)列極限和函數(shù)極限的概念。
(3)掌握極限的四則運算法則;會求某些數(shù)列與函數(shù)的極限。
(4)了解連續(xù)的意義,借助幾何直觀理解閉區(qū)間上連續(xù)函數(shù)有最大值和最小值的性質(zhì)。
3.導(dǎo)數(shù)與微分(16課時)
導(dǎo)數(shù)的概念。導(dǎo)數(shù)的幾何意義。幾種常見函數(shù)的導(dǎo)數(shù)。
兩個函數(shù)的和、差、積、商的導(dǎo)數(shù)。復(fù)合函數(shù)的導(dǎo)數(shù)?;緦?dǎo)數(shù)公式。
微分的概念與運算。
利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值。函數(shù)的最大值和最小值。
教學(xué)目標(biāo):
(1)了解導(dǎo)數(shù)概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念。
(2)熟記基本導(dǎo)數(shù)公式(c,xm(m為有理數(shù)), sin x, cos x, ex, ax, ln x, logax的導(dǎo)數(shù));掌握兩個函數(shù)和、差、積、商的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會求某些簡單函數(shù)的導(dǎo)數(shù)。
(3)理解微分的概念(dy=y'dx),了解函數(shù)在一點處的微分是函數(shù)增量的線性近似值,會求某些簡單函數(shù)的微分。
(4)會從幾何直觀了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;了解可導(dǎo)函數(shù)在某點取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點兩側(cè)異號);會求一些實際問題(一般指單峰函數(shù))的最大值和最小值。
4.積分(14課時)
定積分的概念。定積分的簡單性質(zhì)。微積分基本公式。
原函數(shù)與不定積分的概念。不定積分的線性性質(zhì)?;痉e分公式。
平面圖形的面積。旋轉(zhuǎn)體的體積。路程問題。變力作功。
微積分學(xué)建立的時代背景和歷史意義。
教學(xué)目標(biāo):
(1)了解定積分概念的某些實際背景(如變速直線運動的路程,曲邊梯形的面積等);了解定積分的定義和定積分的幾何意義;知道函數(shù)連續(xù)是定積分存在的充分條件。
(2)理解定積分的簡單性質(zhì)(線性性質(zhì)和對區(qū)間的可加性);了解微積分基本公式(牛頓-萊布尼茲公式),會用它來求一些函數(shù)的定積分。
(3)掌握原函數(shù)與不定積分的概念, 掌握不定積分的線性性質(zhì); 熟記基本積分公式( c,xm(m為有理數(shù)), sin x, cos x,,ex, ax的積分);會利用線性性質(zhì)和基本積分公式求較簡單的函數(shù)的不定積分。
(4)會用定積分求一些平面圖形的面積、旋轉(zhuǎn)體的體積、變速直線運動的路程、變力所作的功。
(5)通過微積分初步的教學(xué),了解微積分學(xué)產(chǎn)生的時代背景和歷史意義,進行客觀事物相互制約、相互轉(zhuǎn)化、對立統(tǒng)一的辯證關(guān)系等觀點的教育。
5.復(fù)數(shù)(16課時)
復(fù)數(shù)的概念。復(fù)數(shù)的向量表示法。
復(fù)數(shù)的加法與減法。復(fù)數(shù)的乘法與除法。
復(fù)數(shù)的三角形式。復(fù)數(shù)三角形式的乘法、除法、乘方、開方。
教學(xué)目標(biāo):
(1)了解引進復(fù)數(shù)的必要性;理解復(fù)數(shù)的有關(guān)概念;掌握復(fù)數(shù)的代數(shù)表示及向量表示。
(2)掌握復(fù)數(shù)代數(shù)形式的運算法則,能進行復(fù)數(shù)代數(shù)形式的加法、減法、乘法、除法運算。
(3)掌握復(fù)數(shù)三角形式,會進行復(fù)數(shù)三角形式和代數(shù)形式的互化;掌握復(fù)數(shù)三角形式的乘法、除法、乘方、開方運算。
6.研究性課題(選修Ⅰ3課時,選修Ⅱ6課時)
有關(guān)研究性課題的要求和教學(xué)目標(biāo)見本大綱必修課中“研究性課題”的說明。
高二年級數(shù)學(xué)教案篇4
《任意角和弧度制》教案
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1、知識與技能:
(1)推廣角的概念、引入大于角和負(fù)角;
(2)理解并掌握正角、負(fù)角、零角的定義;
(3)理解任意角以及象限角的概念;
(4)掌握所有與角終邊相同的角(包括角)的表示方法;
(5)樹立運動變化觀點,深刻理解推廣后的角的概念;
(6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣;
(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識。
2、過程與方法:
通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情態(tài)與價值:
通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認(rèn)識,即有正角、負(fù)角和零角之分.角的概念推廣以后,知道角之間的關(guān)系.理解掌握終邊相同角的表示方法,學(xué)會運用運動變化的觀點認(rèn)識事物。
教學(xué)重難點
重點:理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。
難點:終邊相同的角的表示。
教學(xué)工具
投影儀等。
教學(xué)過程
【創(chuàng)設(shè)情境】
思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1.25小時,你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?
我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
【探究新知】
1.初中時,我們已學(xué)習(xí)了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置OB,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點。
2.如上述情境中所說的校準(zhǔn)時鐘問題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角.同學(xué)們思考一下:能否再舉出幾個現(xiàn)實生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說明了什么問題?又該如何區(qū)分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle)。
3.學(xué)習(xí)小結(jié):
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直線上的角的集合。
課后習(xí)題
作業(yè):
1、習(xí)題1.1A組第1,2,3題.
2.多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點.
板書
略
高二年級數(shù)學(xué)教案篇5
《三角函數(shù)的圖象與性質(zhì)》教案
教學(xué)目標(biāo)
1、知識與技能:
(1)理解并掌握正弦函數(shù)的定義域、值域、周期性、(小)值、單調(diào)性、奇偶性;
(2)能熟練運用正弦函數(shù)的性質(zhì)解題。
2、過程與方法:
通過正弦函數(shù)在R上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價值觀:
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
教學(xué)重難點
重點:正弦函數(shù)的性質(zhì)。
難點:正弦函數(shù)的性質(zhì)應(yīng)用。
教學(xué)工具
投影儀。
教學(xué)過程
【創(chuàng)設(shè)情境,揭示課題】
同學(xué)們,我們在數(shù)學(xué)一中已經(jīng)學(xué)過函數(shù),并掌握了討論一個函數(shù)性質(zhì)的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學(xué)習(xí)了正弦函數(shù)的y=sinx在R上圖像,下面請同學(xué)們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?
【探究新知】
讓學(xué)生一邊看投影,一邊仔細(xì)觀察正弦曲線的圖像,并思考以下幾個問題:
(1)正弦函數(shù)的定義域是什么?
(2)正弦函數(shù)的值域是什么?
(3)它的最值情況如何?
(4)它的正負(fù)值區(qū)間如何分?
(5)?(x)=0的解集是多少?
師生一起歸納得出:
1.定義域:y=sinx的定義域為R
2.值域:引導(dǎo)回憶單位圓中的正弦函數(shù)線,結(jié)論:|sinx|≤1(有界性)
再看正弦函數(shù)線(圖象)驗證上述結(jié)論,所以y=sinx的值域為[-1,1]