必修二數(shù)學(xué)點(diǎn)直線平面位置關(guān)系知識(shí)點(diǎn)

崇灝3633 分享 時(shí)間:

學(xué)好數(shù)學(xué)要善于總結(jié)自己掌握的數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了數(shù)學(xué)的解題技巧。做到總結(jié)和歸納是學(xué)會(huì)數(shù)學(xué)的關(guān)鍵。下面是小編整理的必修二數(shù)學(xué)點(diǎn)直線平面位置關(guān)系知識(shí)點(diǎn),僅供參考希望能夠幫助到大家。

必修二數(shù)學(xué)點(diǎn)直線平面位置關(guān)系知識(shí)點(diǎn)

直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

②直線和平面相交——有且只有一個(gè)公共點(diǎn)

直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

esp.空間向量法(找平面的法向量)

規(guī)定:

a、直線與平面垂直時(shí),所成的角為直角,

b、直線與平面平行或在平面內(nèi),所成的角為0°角

由此得直線和平面所成角的取值范圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

esp.直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

③直線和平面平行——沒有公共點(diǎn)

直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

數(shù)學(xué)函數(shù)的概念知識(shí)點(diǎn)

1.常量與變量:在某一變化過程中,可以取不同數(shù)值的量叫做變量;在某一變化過程中保持?jǐn)?shù)值不變的量叫做常量.

2.函數(shù):在某一變化過程中的兩個(gè)變量x和y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)確定的值,y都有唯一確定的值和它對(duì)應(yīng),那么y就叫做x的函數(shù),其中x做自變量,y是因變量.

(1)自變量取值范圍的確定

①整式函數(shù)自變量的取值范圍是全體實(shí)數(shù).

②分式函數(shù)自變量的取值范圍是使分母不為0的實(shí)數(shù).

③二次根式函數(shù)自變量的取值范嗣是使被開方數(shù)是非負(fù)數(shù)的實(shí)數(shù),若涉及實(shí)際問題的函數(shù),除滿足上述要求外還要使實(shí)際問題有意義.

數(shù)學(xué)數(shù)列知識(shí)點(diǎn)

1.數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系

2.等差數(shù)列中

(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.

(2)也成等差數(shù)列.

(3)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列.

(4) 仍成等差數(shù)列.

(5)“首正”的遞等差數(shù)列中,前 項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前 項(xiàng)和的最小值是所有非正項(xiàng)之和;

(6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和-偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng).

(7)兩數(shù)的等差中項(xiàng)惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.

(8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式).

3.等比數(shù)列中:

(1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性.

(2)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列.

(3)“首大于1”的正值遞減等比數(shù)列中,前 項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前 項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;

(4)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定.若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和.

(5)并非任何兩數(shù)總有等比中項(xiàng).僅當(dāng)實(shí)數(shù) 同號(hào)時(shí),實(shí)數(shù) 存在等比中項(xiàng).對(duì)同號(hào)兩實(shí)數(shù) 的等比中項(xiàng)不僅存在,而且有一對(duì).也就是說,兩實(shí)數(shù)要么沒有等比中項(xiàng)(非同號(hào)時(shí)),如果有,必有一對(duì)(同號(hào)時(shí)).在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解.

(6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式).

4.等差數(shù)列與等比數(shù)列的聯(lián)系

(1)如果數(shù)列成等差數(shù)列,那么數(shù)列( 總有意義)必成等比數(shù)列.

(2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列.

(3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件.

(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù).

如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列.

5.數(shù)列求和的常用方法:

(1)公式法:①等差數(shù)列求和公式(三種形式),

②等比數(shù)列求和公式(三種形式),

(2)分組求和法:在直接運(yùn)用公式法求和有困難時(shí),常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和.

(3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則常可考慮選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法).

(4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯(cuò)位相減法,將其和轉(zhuǎn)化為“一個(gè)新的的等比數(shù)列的和”求解(注意:一般錯(cuò)位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”!)(這也是等比數(shù)列前 和公式的推導(dǎo)方法之一).

(5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和

(6)通項(xiàng)轉(zhuǎn)換法。

必修二數(shù)學(xué)點(diǎn)直線平面位置關(guān)系知識(shí)點(diǎn)相關(guān)文章:

高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)筆記整理

高二數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)梳理歸納5篇

高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)五篇

最新高一數(shù)學(xué)知識(shí)點(diǎn)整理歸納5篇

高中高考數(shù)學(xué)必備知識(shí)點(diǎn)匯集2021

高中數(shù)學(xué)知識(shí)點(diǎn)精選難點(diǎn)

高一數(shù)學(xué)知識(shí)點(diǎn)大全5篇

人教版高一數(shù)學(xué)必修一難點(diǎn)總結(jié)5篇

八年級(jí)上冊(cè)人教版數(shù)學(xué)第二章知識(shí)點(diǎn)歸納總結(jié)

必修二數(shù)學(xué)點(diǎn)直線平面位置關(guān)系知識(shí)點(diǎn)

將本文的Word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
944539