經(jīng)濟數(shù)學發(fā)展歷史心得體會3篇

小邱1147 分享 時間:

經(jīng)濟數(shù)學是高等數(shù)學的一類,分為微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計。下面是為大家準備的經(jīng)濟數(shù)學發(fā)展歷史心得體會,希望大家喜歡!

經(jīng)濟數(shù)學發(fā)展歷史心得體會范文1

在《經(jīng)濟數(shù)學發(fā)展歷史》中楊教授將經(jīng)濟數(shù)學的發(fā)展歷史與各歷史人物對經(jīng)濟數(shù)學的貢獻作了概貌的敘述,對我了解經(jīng)濟數(shù)學有很大的幫助,總結(jié)如下:

經(jīng)濟學包含微分、積分、概率、統(tǒng)計及線性代數(shù)。其中微分要對函數(shù)要有一定了解,熟悉一些基本概念,了解變量之間的關(guān)系,了解函數(shù)的基本屬性,才能更清楚地了解函數(shù)屬性。積分是微分的逆過程,分不定積分與定積分,積分的基本公式很重要,是進行積分運算的基礎,若不能靈活運用則無法進行積分運算。概率是事件發(fā)生的幾率,統(tǒng)計是對事件發(fā)生幾率找出規(guī)律來描述,預估總體由樣本進行,分布狀況從統(tǒng)計結(jié)果得來,概率與統(tǒng)計的基本概念有平均值/標準差。線性代數(shù)是通過行列式進行計算的,要了解行列式的概念與化簡方法,會計算行列式的值。若不是之前我對經(jīng)濟數(shù)學有一定的了解,這個課程聽起來會很困難,因其中的公式與計算方法若不能理解則會有聽不下去的感覺。借助之前的一些基礎,雖然有部分內(nèi)容聽得似懂非懂,但經(jīng)過查閱和反復聽課,還是弄明白了不少知識,只有理解了才能有更深入地認識,這與楊教授在剖析這門課程的時候深入淺出是分不開的。

經(jīng)濟數(shù)學發(fā)展歷史心得體會范文2

聽了楊立洪教授的《經(jīng)濟數(shù)學發(fā)展歷史》,對經(jīng)濟數(shù)學的發(fā)展及內(nèi)容有了更深入的理解。經(jīng)濟數(shù)學是數(shù)學的一個分支,包括微積分、線性代數(shù)與概率統(tǒng)計,楊立洪教授將初等數(shù)學比作樹根,微積分比作樹干,各種名目繁多的數(shù)學分支比作樹枝,意味著各種數(shù)學分支都離不開經(jīng)濟數(shù)學的支撐,說明經(jīng)濟數(shù)學對科技的發(fā)展有非常大的幫助與貢獻。

在經(jīng)濟學的三大塊:微積分、線性代數(shù)和概率統(tǒng)計中,我的理解是,微分是將復雜的問題簡單化,一條曲線中的一個點用切線來表示,這條曲線是由無數(shù)個切點組成,就將復雜的曲線簡單化了,積分就是將點擴到線,從線擴到面,使曲面的面積是可以計算的,微積分的合用就可以解決非線性相關(guān)的問題,在我們現(xiàn)實生活中,非線性是遠遠多于線性的,經(jīng)過微積分的轉(zhuǎn)換與運算,讓非線性的問題解決變得可能。線性代數(shù)是在解決如何簡化和求解線性方程,可以通過計算得出簡單的結(jié)果,概率統(tǒng)計是在描述一些機率的發(fā)生可以被概括,看似隨機的事件多交發(fā)生后,其結(jié)果是有規(guī)律并且可以描述的,與很多杰出的歷史先祖對經(jīng)濟數(shù)學發(fā)展作出的巨大貢獻分不開。

通過學生經(jīng)濟數(shù)學的發(fā)展歷史,可以了解到經(jīng)濟數(shù)學的意義與用途,為進一步學習打基礎。

經(jīng)濟數(shù)學發(fā)展歷史心得體會范文3

經(jīng)過一年的經(jīng)濟數(shù)學的學習,我不僅知識方面得到了提高,思維方面也得到了升華。我認為經(jīng)濟數(shù)學有以下幾個顯著特點:

1)識記的知識相對減少,理解的知識點相對增加。

2)不僅要求會運用所學的知識解題,還要明白其來龍去。

3)聯(lián)系實際多,對專業(yè)學習幫助大。

4)教師授課速度快,課下復習與預習必不可少。

在大學之前的學習,都是老師在黑板上寫滿各種公式,然后像背單詞一樣,把一堆公式死記硬背下來。哪種類型的題目用哪個公式,老師都已經(jīng)總結(jié)出來,我只要對號入座,就能把問題解出來。但現(xiàn)在,我只需要記住一些定義、定理和推論。而老師也不會給出固定的解題套路。因為經(jīng)濟數(shù)學與中學數(shù)學不同,它更要求理解。只要充分理解了每個知識點,遇到題目就能自己分析出正確的解題思路。所以,學習經(jīng)濟數(shù)學,記憶的負擔輕了,但對思維的要求卻提高了。每一次微積分課程,都是一次大腦的思維訓練,都是一次提升理解力的好機會。 我們學習經(jīng)濟數(shù)學不能只停留在以解出答案為目標,而是應該知道每一步解題的依據(jù)。正如前面提到的,中學時期學過的許多定理并不要求我們理解其結(jié)論的推導過程。而經(jīng)濟數(shù)學課本中的每一個定理都有詳細的證明。最初,我以為只要把定理內(nèi)容記住,能做題就行了。漸漸地,我發(fā)現(xiàn)如果沒有真正摸透每個定理,就不能自如地運用它。于是,我開始認真地學習每一個定理的推導。有時候,有些地方很難理解,我就反復思考,或請教老師、同學。這個過程雖不輕松但卻很值得。因為只有通過自己不斷地探索,才能更好地掌握這些知識。

總而言之,經(jīng)濟數(shù)學的以上幾個特點,使我的數(shù)學學習歷程充滿了艱難,同時也給了我難得的鍛煉機會,讓我收獲頗多。

進入大學之前,我們都在學習基礎的數(shù)學知識,聯(lián)系實際的東西并不多。在大學不同專業(yè)的學生學習的數(shù)學是不同的。因此,經(jīng)濟數(shù)學的課本上有了更多聯(lián)系實際的內(nèi)容,這對專業(yè)學習的幫助是很大的。比如“常用簡單經(jīng)濟函數(shù)介紹”中所列舉的需求函數(shù)、供給函數(shù)、生產(chǎn)函數(shù)等等在西方經(jīng)濟學的學習中都有用到。而“極值原理在經(jīng)濟管理和經(jīng)濟分析中的應用”這一節(jié)與經(jīng)濟學中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎,經(jīng)濟學中的許多問題都無法解決。

當我親身學習了經(jīng)濟數(shù)學,并試圖把它運用到經(jīng)濟問題的分析中時,才真正體會到了數(shù)學方法是經(jīng)濟學中最重要的方法之一,是經(jīng)濟理論取得突破性發(fā)展的重要工具。這也堅定了我努力學好經(jīng)濟數(shù)學的決心雖然我的數(shù)學很差勁,但是在未來學習經(jīng)濟數(shù)學的路途上會不斷努力的!

雖然說經(jīng)濟數(shù)學在我們的實際生活中,并沒有什么實際的用途,但是通過學習經(jīng)濟數(shù)學,我們的思想逐漸成熟,經(jīng)濟數(shù)學對我們以后的學習奠定了基礎,所以說,在今后的學習中,可以充分的運用經(jīng)濟數(shù)學知識,不斷地完善自己。


經(jīng)濟數(shù)學發(fā)展歷史心得體會3篇相關(guān)文章:

《經(jīng)濟學》讀后感1000字范文

2019新中國成立70周年心得體會范文5篇

2019建國七十周年優(yōu)秀心得觀后感范文五篇

2019十九屆四中全會心得體會3篇

2019不忘初心牢記使命引領(lǐng)時代繼續(xù)前進心得體會范文5篇

2020教師教學學期個人年終工作總結(jié)優(yōu)秀范文10篇

2019不忘初心牢記使命紅色教育心得體會精選5篇

2019學習時代楷模張福清先進個人事跡心得體會6篇

2020觀讓青春為祖國綻放有感

經(jīng)濟數(shù)學發(fā)展歷史心得體會3篇

將本文的Word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔文檔為doc格式
747803