浙教版九年級數(shù)學(xué)下冊教案
通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數(shù)、一次項及其系數(shù)與常數(shù)項等概念.一起看看浙教版九年級數(shù)學(xué)下冊教案!歡迎查閱!
浙教版九年級數(shù)學(xué)下冊教案1
1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數(shù)、一次項及其系數(shù)與常數(shù)項等概念.
2.了解一元二次方程的解的概念,會檢驗一個數(shù)是不是一元二次方程的解.
重點
通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.
難點
一元二次方程及其二次項系數(shù)、一次項系數(shù)和常數(shù)項的識別.
活動1 復(fù)習(xí)舊知
1.什么是方程?你能舉一個方程的例子嗎?
2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.
(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1
3.下列哪個實數(shù)是方程2x-1=3的解?并給出方程的解的概念.
A.0 B.1 C.2 D.3
活動2 探究新知
根據(jù)題意列方程.
1.教材第2頁 問題1.
提出問題:
(1)正方形的大小由什么量決定?本題應(yīng)該設(shè)哪個量為未知數(shù)?
(2)本題中有什么數(shù)量關(guān)系?能利用這個數(shù)量關(guān)系列方程嗎?怎么列方程?
(3)這個方程能整理為比較簡單的形式嗎?請說出整理之后的方程.
2.教材第2頁 問題2.
提出問題:
(1)本題中有哪些量?由這些量可以得到什么?
(2)比賽隊伍的數(shù)量與比賽的場次有什么關(guān)系?如果有5個隊參賽,每個隊比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?
(3)如果有x個隊參賽,一共比賽多少場呢?
3.一個數(shù)比另一個數(shù)大3,且兩個數(shù)之積為0,求這兩個數(shù).
提出問題:
本題需要設(shè)兩個未知數(shù)嗎?如果可以設(shè)一個未知數(shù),那么方程應(yīng)該怎么列?
4.一個正方形的面積的2倍等于25,這個正方形的邊長是多少?
活動3 歸納概念
提出問題:
(1)上述方程與一元一次方程有什么相同點和不同點?
(2)類比一元一次方程,我們可以給這一類方程取一個什么名字?
(3)歸納一元二次方程的概念.
1.一元二次方程:只含有________個未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
提出問題:
(1)一元二次方程的一般形式有什么特點?等號的左、右分別是什么?
(2)為什么要限制a≠0,b,c可以為0嗎?
(3)2x2-x+1=0的一次項系數(shù)是1嗎?為什么?
3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根).
活動4 例題與練習(xí)
例1 在下列方程中,屬于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
總結(jié):判斷一個方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個未知數(shù);(3)含有未知數(shù)的項的次數(shù)是2.注意有些方程化簡前含有二次項,但是化簡后二次項系數(shù)為0,這樣的方程不是一元二次方程.
例2 教材第3頁 例題.
例3 以-2為根的一元二次方程是( )
A.x2+2x-1=0 B.x2-x-2=0
C.x2+x+2=0 D.x2+x-2=0
總結(jié):判斷一個數(shù)是否為方程的解,可以將這個數(shù)代入方程,判斷方程左、右兩邊的值是否相等.
練習(xí):
1.若(a-1)x2+3ax-1=0是關(guān)于x的一元二次方程,那么a的取值范圍是________.
2.將下列一元二次方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4頁 練習(xí)第2題.
4.若-4是關(guān)于x的一元二次方程2x2+7x-k=0的一個根,則k的值為________.
答案:1.a≠1;2.略;3.略;4.k=4.
活動5 課堂小結(jié)與作業(yè)布置
課堂小結(jié)
我們學(xué)習(xí)了一元二次方程的哪些知識?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?
作業(yè)布置
教材第4頁 習(xí)題21.1第1~7題.
浙教版九年級數(shù)學(xué)下冊教案2
21.2.1 配方法(3課時)
第1課時 直接開平方法
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次——轉(zhuǎn)化的數(shù)學(xué)思想.
難點
通過根據(jù)平方根的意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復(fù)習(xí)引入
學(xué)生活動:請同學(xué)們完成下列各題.
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學(xué)生分組討論)
老師點評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略.
例2 市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.
分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.
所以,每年人均住房面積增長率應(yīng)為20%.
(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.
三、鞏固練習(xí)
教材第6頁 練習(xí).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉(zhuǎn)化之目的.若p<0則方程無解.
五、作業(yè)布置
教材第16頁 復(fù)習(xí)鞏固1.第2課時 配方法的基本形式
理解間接即通過變形運用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.
通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.
重點
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.
難點
將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.
一、復(fù)習(xí)引入
(學(xué)生活動)請同學(xué)們解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探索新知
列出下面問題的方程并回答:
(1)列出的經(jīng)化簡為一般形式的方程與剛才解題的方程有什么不同呢?
(2)能否直接用上面前三個方程的解法呢?
問題:要使一塊矩形場地的長比寬多6 m,并且面積為16 m2,求場地的長和寬各是多少?
(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:
x2+6x-16=0移項→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2 m,長為8 m.
像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.
可以看出,配方法是為了降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解.
例1 用配方法解下列關(guān)于x的方程:
(1)x2-8x+1=0 (2)x2-2x-12=0
分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.
解:略.
三、鞏固練習(xí)
教材第9頁 練習(xí)1,2.(1)(2).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數(shù),可以直接降次解方程的方程.
五、作業(yè)布置
教材第17頁 復(fù)習(xí)鞏固2,3.(1)(2).第3課時 配方法的靈活運用
了解配方法的概念,掌握運用配方法解一元二次方程的步驟.
通過復(fù)習(xí)上一節(jié)課的解題方法,給出配方法的概念,然后運用配方法解決一些具體題目.
重點
講清配方法的解題步驟.
難點
對于用配方法解二次項系數(shù)為1的一元二次方程,通常把常數(shù)項移到方程右邊后,兩邊加上的常數(shù)是一次項系數(shù)一半的平方;對于二次項系數(shù)不為1的一元二次方程,要先化二次項系數(shù)為1,再用配方法求解.
一、復(fù)習(xí)引入
(學(xué)生活動)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
老師點評:我們上一節(jié)課,已經(jīng)學(xué)習(xí)了如何解左邊不含有x的完全平方形式的一元二次方程以及不可以直接開方降次解方程的轉(zhuǎn)化問題,那么這兩道題也可以用上面的方法進行解題.
解:略. (2)與(1)有何關(guān)聯(lián)?
二、探索新知
討論:配方法解一元二次方程的一般步驟:
(1)先將已知方程化為一般形式;
(2)化二次項系數(shù)為1;
(3)常數(shù)項移到右邊;
(4)方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;
(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.
例1 解下列方程:
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
分析:我們已經(jīng)介紹了配方法,因此,我們解這些方程就可以用配方法來完成,即配一個含有x的完全平方式.
解:略.
三、鞏固練習(xí)
教材第9頁 練習(xí)2.(3)(4)(5)(6).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
1.配方法的概念及用配方法解一元二次方程的步驟.
2.配方法是解一元二次方程的通法,它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,也可通過配方,利用非負數(shù)的性質(zhì)判斷代數(shù)式的正負性.在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時,還將經(jīng)常用到.
五、作業(yè)布置
教材第17頁 復(fù)習(xí)鞏固3.(3)(4).
補充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.
(2)求證:無論x,y取任何實數(shù),多項式x2+y2-2x-4y+16的值總是正數(shù).21.2.2 公式法
理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會熟練應(yīng)用公式法解一元二次方程.
復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.
重點
求根公式的推導(dǎo)和公式法的應(yīng)用.
難點
一元二次方程求根公式的推導(dǎo).
一、復(fù)習(xí)引入
1.前面我們學(xué)習(xí)過解一元二次方程的“直接開平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提問1 這種解法的(理論)依據(jù)是什么?
提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數(shù)”的特殊二次方程有效,不能實施于一般形式的二次方程.)
2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)
(學(xué)生活動)用配方法解方程 2x2+3=7x
(老師點評)略
總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點評).
(1)先將已知方程化為一般形式;
(2)化二次項系數(shù)為1;
(3)常數(shù)項移到右邊;
(4)方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;
(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學(xué)獨立完成下面這個問題.
問題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)
分析:因為前面具體數(shù)字已做得很多,我們現(xiàn)在不妨把a,b,c也當(dāng)成一個具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.
解:移項,得:ax2+bx=-c
二次項系數(shù)化為1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,當(dāng)b2-4ac≥0時,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接開平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:
(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.
(2)這個式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有兩個實數(shù)根.
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.
補:(5)(x-2)(3x-5)=0
三、鞏固練習(xí)
教材第12頁 練習(xí)1.(1)(3)(5)或(2)(4)(6).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
(1)求根公式的概念及其推導(dǎo)過程;
(2)公式法的概念;
(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數(shù)a,b,c,注意各項的系數(shù)包括符號;3)計算b2-4ac,若結(jié)果為負數(shù),方程無解;4)若結(jié)果為非負數(shù),代入求根公式,算出結(jié)果.
(4)初步了解一元二次方程根的情況.
五、作業(yè)布置
教材第17頁 習(xí)題4,5.21.2.3 因式分解法
浙教版九年級數(shù)學(xué)下冊教案3
重點
利用一元二次方程解決傳播問題、百分率問題.
難點
如果理解傳播問題的傳播過程和百分率問題中的增長(降低)過程,找到傳播問題和百分率問題中的數(shù)量關(guān)系.
一、引入新課
1.列方程解應(yīng)用題的基本步驟有哪些?應(yīng)注意什么?
2.科學(xué)家在細胞研究過程中發(fā)現(xiàn):
(1)一個細胞一次可分裂成2個,經(jīng)過3次分裂后共有多少個細胞?
(2)一個細胞一次可分裂成x個,經(jīng)過3次分裂后共有多少個細胞?
(3)如是一個細胞一次可分裂成2個,分裂后原有細胞仍然存在并能再次分裂,試問經(jīng)過3次分裂后共有多少個細胞?
二、教學(xué)活動
活動1:自學(xué)教材第19頁探究1,思考教師所提問題.
有一人患了流感,經(jīng)過兩輪傳染后,有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
(1)如何理解“兩輪傳染”?如果設(shè)每輪傳染中平均一個人傳染了x個人,第一輪傳染后共有________人患流感.第二輪傳染后共有________人患流感.
(2)本題中有哪些數(shù)量關(guān)系?
(3)如何利用已知的數(shù)量關(guān)系選取未知數(shù)并列出方程?
解答:設(shè)每輪傳染中平均一個人傳染了x個人,則依題意第一輪傳染后有(x+1)人患了流感,第二輪有x(1+x)人被傳染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合題意舍去)
因此每輪傳染中平均一個人傳染了10個人.
變式練習(xí):如果按這樣的傳播速度,三輪傳染后有多少人患了流感?
活動2:自學(xué)教材第19頁~第20頁探究2,思考老師所提問題.
兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(1)如何理解年平均下降額與年平均下降率?它們相等嗎?
(2)若設(shè)甲種藥品年平均下降率為x,則一年后,甲種藥品的成本下降了________元,此時成本為________元;兩年后,甲種藥品下降了________元,此時成本為________元.
(3)增長率(下降率)公式的歸納:設(shè)基準數(shù)為a,增長率為x,則一月(或一年)后產(chǎn)量為a(1±x);
二月(或二年)后產(chǎn)量為a(1±x)2;
n月(或n年)后產(chǎn)量為a(1±x)n;
如果已知n月(n年)后總產(chǎn)量為M,則有下面等式:M=a(1±x)n.
(4)對甲種藥品而言根據(jù)等量關(guān)系列方程為:________________.
三、課堂小結(jié)與作業(yè)布置
課堂小結(jié)
1.列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答.最后要檢驗根是否符合實際.
2.傳播問題解決的關(guān)鍵是傳播源的確定和等量關(guān)系的建立.
3.若平均增長(降低)率為x,增長(或降低)前的基準數(shù)是a,增長(或降低)n次后的量是b,則有:a(1±x)n=b(常見n=2).
4.成本下降額較大的藥品,它的下降率不一定也較大,成本下降額較小的藥品,它的下降率不一定也較小.
作業(yè)布置
教材第21-22頁 習(xí)題21.3第2-7題.第2課時 解決幾何問題
1.通過探究,學(xué)會分析幾何問題中蘊含的數(shù)量關(guān)系,列出一元二次方程解決幾何問題.
2.通過探究,使學(xué)生認識在幾何問題中可以將圖形進行適當(dāng)變換,使列方程更容易.
3.通過實際問題的解答,再次讓學(xué)生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標(biāo)準.
浙教版九年級數(shù)學(xué)下冊教案相關(guān)文章:
★ 人教版初中數(shù)學(xué)下冊【七到九年級】電子教科書下載網(wǎng)址