初中學生中考數(shù)學復習知識點整理

彭永0 分享 時間:

知道哪些中考數(shù)學知識點歸納是真正對我們有幫助的嗎?是不是聽到知識點,就立刻清醒了?知識點就是一些??嫉膬?nèi)容,或者考試經(jīng)常出題的地方。下面是小編給大家整理的初中學生中考數(shù)學復習知識點整理,僅供參考希望能幫助到大家。

初中學生中考數(shù)學復習知識點整理

初中學生中考數(shù)學復習知識點整理篇1

1、反比例函數(shù)的概念

一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。

2、反比例函數(shù)的圖像

反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

3、反比例函數(shù)的性質(zhì)

反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,

y的取值范圍是y0;

②當k>0時,函數(shù)圖像的兩個分支分別

在第一、三象限。在每個象限內(nèi),y

隨x的增大而減小。

①x的取值范圍是x0,

y的取值范圍是y0;

②當k<0時,函數(shù)圖像的兩個分支分別

在第二、四象限。在每個象限內(nèi),y

隨x的增大而增大。

4、反比例函數(shù)解析式的確定

確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

5、反比例函數(shù)的幾何意義

設是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

(1)△OPA的面積.

(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

矩形PCEF面積=,平行四邊形PDEA面積=

初中學生中考數(shù)學復習知識點整理篇2

1、兩組對邊平行的四邊形是平行四邊形。

2、性質(zhì):

(1)平行四邊形的對邊相等且平行;

(2)平行四邊形的對角相等,鄰角互補;

(3)平行四邊形的對角線互相平分。

3、判定:

(1)兩組對邊分別平行的四邊形是平行四邊形:

(2)兩組對邊分別相等的四邊形是平行四邊形;

(3)一組對邊平行且相等的四邊形是平行四邊形;

(4)兩組對角分別相等的四邊形是平行四邊形:

(5)對角線互相平分的四邊形是平行四邊形。

4、對稱性:平行四邊形是中心對稱圖形。

初中學生中考數(shù)學復習知識點整理篇3

【知識點一】實數(shù)的分類

1、按定義分類: 2.按性質(zhì)符號分類:

注:0既不是正數(shù)也不是負數(shù).

【知識點二】實數(shù)的相關概念

1.相反數(shù)

(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

(2)幾何意義:在數(shù)軸上原點的兩側,與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱.

(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.

2.絕對值 |a|0.

3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .

4.平方根

(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a0)的平方根記作.

(2)一個正數(shù)a的正的平方根,叫做a的算術平方根.a(a0)的算術平方根記作 .

5.立方根

如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.

【知識點三】實數(shù)與數(shù)軸

數(shù)軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

【知識點四】實數(shù)大小的比較

1.對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.

2.正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.

3.無理數(shù)的比較大小:

【知識點五】實數(shù)的運算

1.加法

同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).

2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).

3.乘法

幾個非零實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)有奇數(shù)個時,積為負.幾個數(shù)相乘,有一個因數(shù)為0,積就為0.

4.除法

除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.

5.乘方與開方

(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù).

(2)正數(shù)和0可以開平方,負數(shù)不能開平方;正數(shù)、負數(shù)和0都可以開立方.

(3)零指數(shù)與負指數(shù)

【知識點六】有效數(shù)字和科學記數(shù)法

1.有效數(shù)字:

一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.

2.科學記數(shù)法:

把一個數(shù)用 (110,n為整數(shù))的形式記數(shù)的方法叫科學記數(shù)法.

有了上文梳理的人教版數(shù)學期中考試知識點匯總(2),相信大家對考試充滿了信心,同時預祝大家考試取得好成績。

初中學生中考數(shù)學復習知識點整理篇4

1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

5.同位角、內(nèi)錯角、同旁內(nèi)角:

同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

8.對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

9.定理與性質(zhì)

對頂角的性質(zhì):對頂角相等。

10垂線的性質(zhì):

性質(zhì)1:過一點有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

11.平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

12.平行線的性質(zhì):

性質(zhì)1:兩直線平行,同位角相等。

性質(zhì)2:兩直線平行,內(nèi)錯角相等。

性質(zhì)3:兩直線平行,同旁內(nèi)角互補。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內(nèi)錯角相等,兩直線平行。

判定3:同旁內(nèi)角相等,兩直線平行。

初中學生中考數(shù)學復習知識點整理篇5

同位角知識:兩條直線a,b被第三條直線c所截會出現(xiàn)“三線八角”。

同位角的特征識別:

1.在截線的同旁;

2.在被截兩直線的同方向;

3.同位角截取圖呈“F”型。

平行線的性質(zhì)與判定

平行線的性質(zhì):兩直線平行,同位角相等。

知識歸納:平行線的判定:同位角相等,兩直線平行。

初中學生中考數(shù)學復習知識點整理篇6

一、比和比例的性質(zhì)

性質(zhì)1:若a: b=c:d,則(a + c):(b + d)= a:b=c:d;

性質(zhì)2:若a: b=c:d,則(a - c):(b - d)= a:b=c:d;

性質(zhì)3:若a: b=c:d,則(a +x c):(b +x d)=a:b=c:d;(x為常數(shù))

性質(zhì)4:若a: b=c:d,則ad = b(即外項積等于內(nèi)項積)

正比例:如果ab=k(k為常數(shù)),則稱a、b成正比;

反比例:如果ab=k(k為常數(shù)),則稱a、b成反比.

二、比和比例在行程問題中的體現(xiàn)

在行程問題中,因為有速度,所以:

當一組物體行走速度相等,那么行走的路程比等于對應時間的反比;

當一組物體行走路程相等,那么行走的速度比等于對應時間的反比;

當一組物體行走時間相等,那么行走的速度比等于對應路程的正比.

1.A和B兩個數(shù)的比是8:5,每一數(shù)都減少34后,A是B的2倍,試求這兩個數(shù).

初中學生中考數(shù)學復習知識點整理篇7

有理數(shù)的加法運算

同號相加一邊倒;異號相加“大”減“小”,

符號跟著大的跑;絕對值相等“零”正好。

合并同類項

合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

去、添括號法則

去括號、添括號,關鍵看符號,

括號前面是正號,去、添括號不變號,

括號前面是負號,去、添括號都變號。

一元一次方程

已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

平方差公式

平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

完全平方公式

完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

首±尾括號帶平方,尾項符號隨中央。

因式分解

一提(公因式)二套(公式)三分組,細看幾項不離譜,

兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

四項仔細看清楚,若有三個平方數(shù)(項),

就用一三來分組,否則二二去分組,

五項、六項更多項,二三、三三試分組,

以上若都行不通,拆項、添項看清楚。

單項式運算

加、減、乘、除、乘(開)方,三級運算分得清,

系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。

一元一次不等式解題步驟

去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,

兩邊除(以)負數(shù)時,不等號改向別忘了。

一元一次不等式組的解集

大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。

一元二次不等式、一元一次絕對值不等式的解集

大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

分式混合運算法則

分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

變號必須兩處,結果要求最簡。

分式方程的解法步驟

同乘最簡公分母,化成整式寫清楚,

求得解后須驗根,原(根)留、增(根)舍,別含糊。

最簡根式的條件

最簡根式三條件,號內(nèi)不把分母含,

冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點。

特殊點的坐標特征

坐標平面點(x,y),橫在前來縱在后;

(+,+),(-,+),(-,-)和(+,-),四個象限分前后;

x軸上y為0,x為0在y軸。

象限角的平分線

象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反。

平行某軸的直線

平行某軸的直線,點的坐標有講究,

直線平行x軸,縱坐標相等橫不同;

直線平行于y軸,點的橫坐標仍照舊。

對稱點的坐標

對稱點坐標要記牢,相反數(shù)位置莫混淆,

x軸對稱y相反,y軸對稱x相反;

原點對稱記,橫縱坐標全變號。

自變量的取值范圍

分式分母不為零,偶次根下負不行;

零次冪底數(shù)不為零,整式、奇次根全能行。

函數(shù)圖像的移動規(guī)律

若把一次函數(shù)的解析式寫成y=k(x+0)+b,

二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,

則可用下面的口訣

“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”.

一次函數(shù)圖象與性質(zhì)口訣

一次函數(shù)是直線,圖象經(jīng)過三象限;

正比例函數(shù)更簡單,經(jīng)過原點一直線;

兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,

k為正來右上斜,x增減y增減;

k為負來左下展,變化規(guī)律正相反;

k的絕對值越大,線離橫軸就越遠。

二次函數(shù)圖像與性質(zhì)口訣

二次函數(shù)拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象現(xiàn);

開口、大小由a斷,c與y軸來相見;

b的符號較特別,符號與a相關聯(lián);

頂點位置先找見,y軸作為參考線;

左同右異中為0,牢記心中莫混亂;

頂點坐標最重要,一般式配方它就現(xiàn);

橫標即為對稱軸,縱標函數(shù)最值見.

若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

反比例函數(shù)圖像與性質(zhì)口訣

反比例函數(shù)有特點,雙曲線相背離得遠;

k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;

圖在一、三函數(shù)減,兩個分支分別減.

圖在二、四正相反,兩個分支分別增;

線越長越近軸,永遠與軸不沾邊。

特殊三角函數(shù)值記憶

首先記住30度、45度、60度的正弦值、余弦值的分母都是2,

正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

三角函數(shù)的增減性:正增余減

平行四邊形的判定

要證平行四邊形,兩個條件才能行,

一證對邊都相等,或證對邊都平行,

一組對邊也可以,必須相等且平行.

對角線,是個寶,互相平分“跑不了”,

對角相等也有用,“兩組對角”才能成。

梯形問題的輔助線

移動梯形對角線,兩腰之和成一線;

平行移動一條腰,兩腰同在“△”現(xiàn);

延長兩腰交一點,“△”中有平行線;

作出梯形兩高線,矩形顯示在眼前;

已知腰上一中線,莫忘作出中位線。

添加輔助線歌

輔助線,怎么添?找出規(guī)律是關鍵.

題中若有角(平)分線,可向兩邊作垂線;

線段垂直平分線,引向兩端把線連;

三角形邊兩中點,連接則成中位線;

三角形中有中線,延長中線翻一番。

圓的證明歌

圓的證明不算難,常把半徑直徑連;

有弦可作弦心距,它定垂直平分弦;

直徑是圓弦,直圓周角立上邊,

它若垂直平分弦,垂徑、射影響耳邊;

還有與圓有關角,勿忘相互有關聯(lián),

圓周、圓心、弦切角,細找關系把線連.

同弧圓周角相等,證題用它最多見,

圓中若有弦切角,夾弧找到就好辦;

圓有內(nèi)接四邊形,對角互補記心間,

外角等于內(nèi)對角,四邊形定內(nèi)接圓;

直角相對或共弦,試試加個輔助圓;

若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端,

直線與圓有共點,證垂直來半徑連,

直線與圓未給點,需證半徑作垂線;

四邊形有內(nèi)切圓,對邊和等是條件;

如果遇到圓與圓,弄清位置很關鍵,

兩圓相切作公切,兩圓相交連公弦。

初中學生中考數(shù)學復習知識點整理篇8

不等式與不等式組

1.定義:

用符號〉,=,〈號連接的式子叫不等式。

2.性質(zhì):

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。

③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

4.考點:

①解一元一次不等式(組)

②根據(jù)具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題

③用數(shù)軸表示一元一次不等式(組)的解集

1397333