初中學生中考數(shù)學復習知識點整理
知道哪些中考數(shù)學知識點歸納是真正對我們有幫助的嗎?是不是聽到知識點,就立刻清醒了?知識點就是一些??嫉膬?nèi)容,或者考試經(jīng)常出題的地方。下面是小編給大家整理的初中學生中考數(shù)學復習知識點整理,僅供參考希望能幫助到大家。
初中學生中考數(shù)學復習知識點整理篇1
1、反比例函數(shù)的概念
一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。
2、反比例函數(shù)的圖像
反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數(shù)的性質(zhì)
反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,
y的取值范圍是y0;
②當k>0時,函數(shù)圖像的兩個分支分別
在第一、三象限。在每個象限內(nèi),y
隨x的增大而減小。
①x的取值范圍是x0,
y的取值范圍是y0;
②當k<0時,函數(shù)圖像的兩個分支分別
在第二、四象限。在每個象限內(nèi),y
隨x的增大而增大。
4、反比例函數(shù)解析式的確定
確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數(shù)的幾何意義
設是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
初中學生中考數(shù)學復習知識點整理篇2
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行;
(2)平行四邊形的對角相等,鄰角互補;
(3)平行四邊形的對角線互相平分。
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形:
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
(4)兩組對角分別相等的四邊形是平行四邊形:
(5)對角線互相平分的四邊形是平行四邊形。
4、對稱性:平行四邊形是中心對稱圖形。
初中學生中考數(shù)學復習知識點整理篇3
【知識點一】實數(shù)的分類
1、按定義分類: 2.按性質(zhì)符號分類:
注:0既不是正數(shù)也不是負數(shù).
【知識點二】實數(shù)的相關概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點的兩側,與原點距離相等的兩個點表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱.
(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.
2.絕對值 |a|0.
3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .
4.平方根
(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負數(shù)沒有平方根.a(a0)的平方根記作.
(2)一個正數(shù)a的正的平方根,叫做a的算術平方根.a(a0)的算術平方根記作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零.
【知識點三】實數(shù)與數(shù)軸
數(shù)軸定義: 規(guī)定了原點,正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.
【知識點四】實數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點,靠右邊的點所表示的數(shù)較大.
2.正數(shù)都大于0,負數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負數(shù);絕對值大的反而小.
3.無理數(shù)的比較大小:
【知識點五】實數(shù)的運算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).
2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
3.乘法
幾個非零實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)有奇數(shù)個時,積為負.幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù).
(2)正數(shù)和0可以開平方,負數(shù)不能開平方;正數(shù)、負數(shù)和0都可以開立方.
(3)零指數(shù)與負指數(shù)
【知識點六】有效數(shù)字和科學記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.
2.科學記數(shù)法:
把一個數(shù)用 (110,n為整數(shù))的形式記數(shù)的方法叫科學記數(shù)法.
有了上文梳理的人教版數(shù)學期中考試知識點匯總(2),相信大家對考試充滿了信心,同時預祝大家考試取得好成績。
初中學生中考數(shù)學復習知識點整理篇4
1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
5.同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
6.命題:判斷一件事情的語句叫命題。
7.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
8.對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
9.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
10垂線的性質(zhì):
性質(zhì)1:過一點有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
11.平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
12.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補。
13.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。
初中學生中考數(shù)學復習知識點整理篇5
同位角知識:兩條直線a,b被第三條直線c所截會出現(xiàn)“三線八角”。
同位角的特征識別:
1.在截線的同旁;
2.在被截兩直線的同方向;
3.同位角截取圖呈“F”型。
平行線的性質(zhì)與判定
平行線的性質(zhì):兩直線平行,同位角相等。
知識歸納:平行線的判定:同位角相等,兩直線平行。
初中學生中考數(shù)學復習知識點整理篇6
一、比和比例的性質(zhì)
性質(zhì)1:若a: b=c:d,則(a + c):(b + d)= a:b=c:d;
性質(zhì)2:若a: b=c:d,則(a - c):(b - d)= a:b=c:d;
性質(zhì)3:若a: b=c:d,則(a +x c):(b +x d)=a:b=c:d;(x為常數(shù))
性質(zhì)4:若a: b=c:d,則ad = b(即外項積等于內(nèi)項積)
正比例:如果ab=k(k為常數(shù)),則稱a、b成正比;
反比例:如果ab=k(k為常數(shù)),則稱a、b成反比.
二、比和比例在行程問題中的體現(xiàn)
在行程問題中,因為有速度,所以:
當一組物體行走速度相等,那么行走的路程比等于對應時間的反比;
當一組物體行走路程相等,那么行走的速度比等于對應時間的反比;
當一組物體行走時間相等,那么行走的速度比等于對應路程的正比.
1.A和B兩個數(shù)的比是8:5,每一數(shù)都減少34后,A是B的2倍,試求這兩個數(shù).
初中學生中考數(shù)學復習知識點整理篇7
有理數(shù)的加法運算
同號相加一邊倒;異號相加“大”減“小”,
符號跟著大的跑;絕對值相等“零”正好。
合并同類項
合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則
去括號、添括號,關鍵看符號,
括號前面是正號,去、添括號不變號,
括號前面是負號,去、添括號都變號。
一元一次方程
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。
平方差公式
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央。
因式分解
一提(公因式)二套(公式)三分組,細看幾項不離譜,
兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,
四項仔細看清楚,若有三個平方數(shù)(項),
就用一三來分組,否則二二去分組,
五項、六項更多項,二三、三三試分組,
以上若都行不通,拆項、添項看清楚。
單項式運算
加、減、乘、除、乘(開)方,三級運算分得清,
系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。
一元一次不等式解題步驟
去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,
兩邊除(以)負數(shù)時,不等號改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。
一元二次不等式、一元一次絕對值不等式的解集
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運算法則
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結果要求最簡。
分式方程的解法步驟
同乘最簡公分母,化成整式寫清楚,
求得解后須驗根,原(根)留、增(根)舍,別含糊。
最簡根式的條件
最簡根式三條件,號內(nèi)不把分母含,
冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點。
特殊點的坐標特征
坐標平面點(x,y),橫在前來縱在后;
(+,+),(-,+),(-,-)和(+,-),四個象限分前后;
x軸上y為0,x為0在y軸。
象限角的平分線
象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反。
平行某軸的直線
平行某軸的直線,點的坐標有講究,
直線平行x軸,縱坐標相等橫不同;
直線平行于y軸,點的橫坐標仍照舊。
對稱點的坐標
對稱點坐標要記牢,相反數(shù)位置莫混淆,
x軸對稱y相反,y軸對稱x相反;
原點對稱記,橫縱坐標全變號。
自變量的取值范圍
分式分母不為零,偶次根下負不行;
零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動規(guī)律
若把一次函數(shù)的解析式寫成y=k(x+0)+b,
二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,
則可用下面的口訣
“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”.
一次函數(shù)圖象與性質(zhì)口訣
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點一直線;
兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;
k為負來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠。
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對稱是關鍵;
開口、頂點和交點,它們確定圖象現(xiàn);
開口、大小由a斷,c與y軸來相見;
b的符號較特別,符號與a相關聯(lián);
頂點位置先找見,y軸作為參考線;
左同右異中為0,牢記心中莫混亂;
頂點坐標最重要,一般式配方它就現(xiàn);
橫標即為對稱軸,縱標函數(shù)最值見.
若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
反比例函數(shù)圖像與性質(zhì)口訣
反比例函數(shù)有特點,雙曲線相背離得遠;
k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;
圖在一、三函數(shù)減,兩個分支分別減.
圖在二、四正相反,兩個分支分別增;
線越長越近軸,永遠與軸不沾邊。
特殊三角函數(shù)值記憶
首先記住30度、45度、60度的正弦值、余弦值的分母都是2,
正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
三角函數(shù)的增減性:正增余減
平行四邊形的判定
要證平行四邊形,兩個條件才能行,
一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行.
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現(xiàn);
延長兩腰交一點,“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
添加輔助線歌
輔助線,怎么添?找出規(guī)律是關鍵.
題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連;
三角形邊兩中點,連接則成中位線;
三角形中有中線,延長中線翻一番。
圓的證明歌
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關角,勿忘相互有關聯(lián),
圓周、圓心、弦切角,細找關系把線連.
同弧圓周角相等,證題用它最多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內(nèi)接四邊形,對角互補記心間,
外角等于內(nèi)對角,四邊形定內(nèi)接圓;
直角相對或共弦,試試加個輔助圓;
若是證題打轉轉,四點共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點,證垂直來半徑連,
直線與圓未給點,需證半徑作垂線;
四邊形有內(nèi)切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關鍵,
兩圓相切作公切,兩圓相交連公弦。
初中學生中考數(shù)學復習知識點整理篇8
不等式與不等式組
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質(zhì):
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據(jù)具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題
③用數(shù)軸表示一元一次不等式(組)的解集