學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理

彭永0 分享 時(shí)間:

掌握中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)有助于大家更好的學(xué)習(xí)。在平時(shí)的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。下面是小編給大家整理的學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理,僅供參考希望能幫助到大家。

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇1

三角形的重心

已知:△ABC中,D為BC中點(diǎn),E為AC中點(diǎn),AD與BE交于O,CO延長線交AB于F。求證:F為AB中點(diǎn)。

證明:根據(jù)燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再應(yīng)用燕尾定理即得AF=BF,命題得證。

重心的幾條性質(zhì):

1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。

2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。

3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(X1+X2+X3)/3 縱坐標(biāo):(Y1+Y2+Y3)/3 豎坐標(biāo):(Z1+Z2+Z3)/3

4.重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。

5.重心是三角形內(nèi)到三邊距離之積最大的點(diǎn)。

如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇2

實(shí)數(shù)與數(shù)軸

1、數(shù)軸:規(guī)定了原點(diǎn)、正方向、單位長度的直線稱為數(shù)軸。

原點(diǎn)、正方向、單位長度是數(shù)軸的三要素。

2、數(shù)軸上的點(diǎn)和實(shí)數(shù)的對(duì)應(yīng)關(guān)系:數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù),而每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的唯一的點(diǎn)來表示。

實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系。

相信上面對(duì)數(shù)學(xué)中實(shí)數(shù)與數(shù)軸知識(shí)點(diǎn)的內(nèi)容總結(jié)學(xué)習(xí),可以很好的幫助同學(xué)們對(duì)此知識(shí)點(diǎn)的鞏固學(xué)習(xí)吧,希望同學(xué)們會(huì)學(xué)習(xí)的更好。

中考數(shù)學(xué)知識(shí)點(diǎn)之實(shí)數(shù)大小的比較

下面是對(duì)數(shù)學(xué)的學(xué)習(xí)中,關(guān)于實(shí)數(shù)大小的比較知識(shí)學(xué)習(xí),希望同學(xué)們很好的掌握。

實(shí)數(shù)大小的比較

1、在數(shù)軸上表示兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。

2、正數(shù)大于0;負(fù)數(shù)小于0;正數(shù)大于一切負(fù)數(shù);兩個(gè)負(fù)數(shù)絕對(duì)值大的反而小。

相信上面對(duì)數(shù)學(xué)中實(shí)數(shù)大小的比較知識(shí)點(diǎn)的講解學(xué)習(xí)之后,同學(xué)們對(duì)上面的知識(shí)已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

中考數(shù)學(xué)知識(shí)點(diǎn)之實(shí)數(shù)中的幾個(gè)概念

關(guān)于數(shù)學(xué)中隊(duì)友實(shí)數(shù)中的幾個(gè)概念知識(shí),我們做下面的講解學(xué)習(xí),相信可以很好的幫助同學(xué)們的學(xué)習(xí)。

實(shí)數(shù)中的幾個(gè)概念

1、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。(1)實(shí)數(shù)a的.相反數(shù)是 -a; (2)a和b互為相反數(shù) a+b=0

2、倒數(shù):(1)實(shí)數(shù)a(a≠0)的倒數(shù)是 ;(2)a和b 互為倒數(shù) ;(3)注意0沒有倒數(shù)

3、絕對(duì)值:(1)一個(gè)數(shù)a 的絕對(duì)值有以下三種情況: (2)實(shí)數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值,就是數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離。(3)去掉絕對(duì)值符號(hào)(化簡)必須要對(duì)絕對(duì)值符號(hào)里面的實(shí)數(shù)進(jìn)行數(shù)性(正、負(fù))確認(rèn),再去掉絕對(duì)值符號(hào)。

4、n次方根(1)平方根,算術(shù)平方根:設(shè)a≥0,稱 叫a的平方根, 叫a的算術(shù)平方根。(2)正數(shù)的平方根有兩個(gè),它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根。(3)立方根: 叫實(shí)數(shù)a的立方根。(4)一個(gè)正數(shù)有一個(gè)正的立方根;0的立方根是0;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根。

通過上面對(duì)實(shí)數(shù)中的幾個(gè)概念知識(shí)點(diǎn)的內(nèi)容總結(jié)學(xué)習(xí),希望同學(xué)們都能很好的掌握上面的知識(shí)點(diǎn),相信同學(xué)們會(huì)從中學(xué)習(xí)的更好的。

中考數(shù)學(xué)知識(shí)點(diǎn)之實(shí)數(shù)的分類

下面是對(duì)數(shù)學(xué)中實(shí)數(shù)的分類知識(shí)點(diǎn)的內(nèi)容講解學(xué)習(xí),希望同學(xué)們對(duì)下面的知識(shí)點(diǎn)都能很好的掌握。

實(shí)數(shù)的分類:

1、有理數(shù):任何一個(gè)有理數(shù)總可以寫成 的形式,其中p、q是互質(zhì)的整數(shù),這是有理數(shù)的重要特征。

2、無理數(shù):初中遇到的無理數(shù)有三種:開不盡的方根,如 、 ;特定結(jié)構(gòu)的不限環(huán)無限小數(shù),如1.101001000100001……;特定意義的數(shù),如π、 °等。

3、判斷一個(gè)實(shí)數(shù)的數(shù)性不能僅憑表面上的感覺,往往要經(jīng)過整理化簡后才下結(jié)論。

以上對(duì)數(shù)學(xué)中實(shí)數(shù)的分類知識(shí)點(diǎn)的內(nèi)容總結(jié)學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們考試成功。

初中數(shù)學(xué)三角形內(nèi)角定理知識(shí)點(diǎn)講解

以下是對(duì)數(shù)學(xué)中三角形內(nèi)角定理知識(shí)的內(nèi)容講解學(xué)習(xí),相信可以很好的幫助同學(xué)們對(duì)此知識(shí)點(diǎn)的鞏固學(xué)習(xí)吧。

三角形內(nèi)角定理

定理:三角形兩邊的和大于第三邊

推論:三角形兩邊的差小于第三邊

三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

推論1:直角三角形的兩個(gè)銳角互余

推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

通過上面對(duì)數(shù)學(xué)中三角形內(nèi)角定理知識(shí)點(diǎn)的講解學(xué)習(xí),相信可以很好的幫助同學(xué)們對(duì)此知識(shí)的學(xué)習(xí)了吧,希望同學(xué)們都能考試成功。

初中數(shù)學(xué)平行定理知識(shí)點(diǎn)講解

如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。

平行定理

平行定理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行

證明兩直線平行定理:

同位角相等,兩直線平行

內(nèi)錯(cuò)角相等,兩直線平行

同旁內(nèi)角互補(bǔ),兩直線平行

兩直線平行推論:

兩直線平行,同位角相等

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇3

概率初步的有關(guān)概念

(1)必然事件是指一定能發(fā)生的事件,或者說發(fā)生的可能性是100%;

(2)不可能事件是指一定不能發(fā)生的事件;

(3)隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件;

(4)隨機(jī)事件的可能性

一般地,隨機(jī)事件發(fā)生的可能性是有大小的,不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同.

(5)概率

一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)P附近,那么這個(gè)常數(shù)P就叫做事件A的概率,記為P(A)=P.

(6)可能性與概率的關(guān)系

事件發(fā)生的可能性越大,它的概率越接近于1,反之事件發(fā)生的可能性越小,則它的概率越接近0.

統(tǒng)計(jì)初步的有關(guān)概念

總體:所要考查對(duì)象的全體叫總體;個(gè)體:總體中每一個(gè)考查對(duì)象.

樣本:從總體中所抽取的一部分個(gè)體叫總體的一個(gè)樣本.

樣本容量:樣本中個(gè)體的數(shù)目.

樣本平均數(shù):樣本中所有個(gè)體的平均數(shù)叫樣本平均數(shù).

總體平均數(shù):總體中所有個(gè)體的平均數(shù)叫做總體平均數(shù).

統(tǒng)計(jì)學(xué)中的基本思想就是用樣本對(duì)總體進(jìn)行估計(jì)、推斷,用樣本的平均水平、波動(dòng)情況、分布規(guī)律等特征估計(jì)總體的平均水平、波動(dòng)情況和分析規(guī)律.

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇4

角度制知識(shí):用度(°)、分(′)、秒(″)來測(cè)量角的大小的制度叫做角度制。

角度制

角度制:規(guī)定周角的360分之一為1度的角,用度作為單位來度量角的單位制叫做角度制。

角度制中單位的換算。

角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

角度制就是運(yùn)用60進(jìn)制的例子。

角度制中角度的運(yùn)算。

兩個(gè)角相加時(shí),°與°相加,′與′相加,″與″相加,其中如果滿60則進(jìn)1。

兩個(gè)角相減時(shí),°與°相減,′與′相減,″與″相減,其中如果不夠則從上一個(gè)單位退1當(dāng)作60。

測(cè)量角的大小的另外一個(gè)方法,角度制與弧度制的換算。

主要把握180°=π rad這個(gè)關(guān)系式。

例如:1度=π /180 弧度30度轉(zhuǎn)換成弧度值:弧度=30__π /180終邊相同的角的表示β=α+k360°k屬于整數(shù)。

知識(shí)歸納:除了角度制可以測(cè)量角的大小,還有一種——弧度制也可以測(cè)量角的大小。

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇5

三角函數(shù)關(guān)系

倒數(shù)關(guān)系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關(guān)系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關(guān)系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數(shù)關(guān)系六角形記憶法

構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

倒數(shù)關(guān)系

對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);

商數(shù)關(guān)系

六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

平方關(guān)系

在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

銳角三角函數(shù)定義

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

正弦(sin)等于對(duì)邊比斜邊;sinA=a/c

余弦(cos)等于鄰邊比斜邊;cosA=b/c

正切(tan)等于對(duì)邊比鄰邊;tanA=a/b

余切(cot)等于鄰邊比對(duì)邊;cotA=b/a

正割(sec)等于斜邊比鄰邊;secA=c/b

余割(csc)等于斜邊比對(duì)邊。cscA=c/a

互余角的三角函數(shù)間的關(guān)系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關(guān)系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關(guān)系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數(shù)關(guān)系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

圓的定理:

1不在同一直線上的三點(diǎn)確定一個(gè)圓。

2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

4圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7同圓或等圓的半徑相等

8到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇6

1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);

(2)有理數(shù)的分類:①②

2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.

3.相反數(shù):

(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0a+b=0a、b互為相反數(shù).

4.絕對(duì)值:

(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

(2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;

5.有理數(shù)比大?。?/p>

(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

6.互為倒數(shù):

乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a0,那么的倒數(shù)是;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).

7.有理數(shù)加法法則:

(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).

8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:

減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).

10.有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.

11.有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數(shù)除法法則:

除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時(shí):(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的精確位:

一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位.

17.有效數(shù)字:

從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.

18.混合運(yùn)算法則:

先乘方,后乘除,最后加減.

本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題.

體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇7

一. 不等關(guān)系

1. 一般地,用符號(hào)“<”(或“≤”),>”(或“≥”)連接的式子叫做不等式.

2. 準(zhǔn)確“翻譯”不等式,正確理解“非負(fù)數(shù)”、“不小于”等數(shù)學(xué)術(shù)語.

非負(fù)數(shù):大于等于0(≥0) 、0和正數(shù)、不小于0

非正數(shù):小于等于0(≤0) 、0和負(fù)數(shù)、不大于0

二. 不等式的基本性質(zhì)

※1. 掌握不等式的基本性質(zhì),并會(huì)靈活運(yùn)用:

(1) 不等式的兩邊加上(或減去)同一個(gè)整式,不等號(hào)的方向不變,

即:如果a>b,那么a+c>b+c, a-c>b-c.

(2) 不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變,

即如果a>b,并且c>0,那么ac>bc, .

(3) 不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變,

即:如果a>b,并且c<0,那么ac

※2. 比較大小:(a、b分別表示兩個(gè)實(shí)數(shù)或整式)

一般地:

如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;

如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;

如果a

即:

a>b,則a-b>0

a=b,則a-b=0

a

(由此可見,要比較兩個(gè)實(shí)數(shù)的大小,只要考察它們的差就可以了.

三. 不等式的解集:

※1. 能使不等式成立的未知數(shù)的值,叫做不等式的解;一個(gè)不等式的所有解,組成這個(gè)不等式的解集;求不等式的解集的過程,叫做解不等式.

※2. 不等式的解可以有無數(shù)多個(gè),一般是在某個(gè)范圍內(nèi)的所有數(shù).

※3. 不等式的解集在數(shù)軸上的表示:

用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:

①定點(diǎn):有等號(hào)的是實(shí)心圓點(diǎn),無等號(hào)的是空心圓圈;

②方向:大向右,小向左

四. 一元一次不等式:

※1. 只含有一個(gè)未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1. 像這樣的不等式叫做一元一次不等式.

※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當(dāng)不等式兩邊都乘以一個(gè)負(fù)數(shù)時(shí),不等號(hào)要改變方向.

※3. 解一元一次不等式的步驟:

①去分母;

②去括號(hào);

③移項(xiàng);

④合并同類項(xiàng);

⑤系數(shù)化為1(注意不等號(hào)方向改變的問題)

※4. 不等式應(yīng)用的探索(利用不等式解決實(shí)際問題)

列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類似,即:

①審:認(rèn)真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如“大于”、“小于”、“不大于”、“不小于”等含義;

②設(shè):設(shè)出適當(dāng)?shù)奈粗獢?shù);

③列:根據(jù)題中的不等關(guān)系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:寫出答案,并檢驗(yàn)答案是否符合題意.

五. 一元一次不等式與一次函數(shù)

六. 一元一次不等式組

※1. 定義:由含有一個(gè)相同未知數(shù)的幾個(gè)一元一次不等式組成的不等式組,叫做一元一次不等式組.

※2. 一元一次不等式組中各個(gè)不等式解集的公共部分叫做不等式組的解集.

如果這些不等式的解集無公共部分,就說這個(gè)不等式組無解.

幾個(gè)不等式解集的公共部分,通常是利用數(shù)軸來確定.

※3. 解一元一次不等式組的步驟:

(1)分別求出不等式組中各個(gè)不等式的解集;

(2)利用數(shù)軸求出這些解集的公共部分,

(3)寫出這個(gè)不等式組的解集.

兩個(gè)一元一次不等式組的解集的四種情況(a、b為實(shí)數(shù),且a

(同大取大;同小取小;大小小大中間找;大大小小無解)

第二章 分解因式

一. 分解因式

※1. 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

※2. 因式分解與整式乘法是互逆關(guān)系.

因式分解與整式乘法的區(qū)別和聯(lián)系:

(1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;

(2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘.

二. 提公共因式法

※1. 如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式.這種分解因式的方法叫做提公因式法.

※2. 概念內(nèi)涵:

(1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;

(2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;

(3)提公因式法的理論依據(jù)是乘法對(duì)加法的分配律,ab +ac=a(b+c)

※3. 易錯(cuò)點(diǎn)點(diǎn)評(píng):

(1)注意項(xiàng)的符號(hào)與冪指數(shù)是否搞錯(cuò);

(2)公因式是否提徹底;

(3)多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號(hào)中這一項(xiàng)為+1,不漏掉.

三. 運(yùn)用公式法

※1. 如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.

※2. 主要公式:

(1)平方差公式:

①應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;

②二項(xiàng)式的每項(xiàng)(不含符號(hào))都是一個(gè)單項(xiàng)式(或多項(xiàng)式)的平方;

③二項(xiàng)是異號(hào).

(2)完全平方公式:

①應(yīng)是三項(xiàng)式;

②其中兩項(xiàng)同號(hào),且各為一整式的平方;

③還有一項(xiàng)可正負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.

※5. 因式分解的思路與解題步驟:

(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積;

(4)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.

第三章 分式

一. 分式

※1. 兩個(gè)整數(shù)不能整除時(shí),出現(xiàn)了分?jǐn)?shù);類似地,當(dāng)兩個(gè)整式不能整除時(shí),就出現(xiàn)了分式.

整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那么稱 為分式,對(duì)于任意一個(gè)分式,分母都不能為零.

※2. 進(jìn)行分?jǐn)?shù)的化簡與運(yùn)算時(shí),常要進(jìn)行約分和通分,其主要依據(jù)是分?jǐn)?shù)的基本性質(zhì):

分式的分子與分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變.

※3. 一個(gè)分式的分子、分母有公因式時(shí),可以運(yùn)用分式的基本性質(zhì),把這個(gè)分式的分子、分母同時(shí)除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.

※4. 分子與分母沒有公因式的分式,叫做最簡分式.

二. 分式的乘除法法則

兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘(簡記為:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù))

三. 分式的加減法

※1. 分式與分?jǐn)?shù)類似,也可以通分.

根據(jù)分式的基本性質(zhì),把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

※2. 分式的加減法:

分式的加減法與分?jǐn)?shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.

(1)同分母的分式相加減,分母不變,把分子相加減;

(2)異號(hào)分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p;

※3. 概念內(nèi)涵:

通分的關(guān)鍵是確定最簡分母,其方法如下:

(1)最簡公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);

(2)最簡公分母的字母,取各分母所有字母的最高次冪的積,

(3)如果分母是多項(xiàng)式,則首先對(duì)多項(xiàng)式進(jìn)行因式分解.

四. 分式方程

※1. 解分式方程的一般步驟:

①在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程;

②解這個(gè)整式方程;

③把整式方程的根代入原方程檢驗(yàn).

※2. 列分式方程解應(yīng)用題的一般步驟:

①審清題意;

②設(shè)未知數(shù);

③根據(jù)題意找相等關(guān)系,列出(分式)方程;

④解方程,并驗(yàn)根;

學(xué)生初中中考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理篇8

1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式.

3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分.

4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減.

1397332