學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板

彭永0 分享 時(shí)間:

掌握初三學(xué)生數(shù)學(xué)知識(shí)點(diǎn)有助于大家更好的學(xué)習(xí)。在平時(shí)的學(xué)習(xí)中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。下面是小編給大家整理的學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板,僅供參考希望能幫助到大家。

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇1

1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);

(2)有理數(shù)的分類:①②

2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.

3.相反數(shù):

(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0a+b=0a、b互為相反數(shù).

4.絕對(duì)值:

(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

(2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;

5.有理數(shù)比大?。?/p>

(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

6.互為倒數(shù):

乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a0,那么的倒數(shù)是;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).

7.有理數(shù)加法法則:

(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).

8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:

減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).

10.有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.

11.有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數(shù)除法法則:

除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時(shí):(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的精確位:

一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位.

17.有效數(shù)字:

從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.

18.混合運(yùn)算法則:

先乘方,后乘除,最后加減.

本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題.

體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇2

1、二次函數(shù)的概念

一般地,如果,那么y叫做x的二次函數(shù)。

叫做二次函數(shù)的一般式。

2、二次函數(shù)的圖像

二次函數(shù)的圖像是一條關(guān)于對(duì)稱的曲線,這條曲線叫拋物線。

拋物線的主要特征:

①有開口方向;②有對(duì)稱軸;③有頂點(diǎn)。

3、二次函數(shù)圖像的畫法

五點(diǎn)法:

(1)先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線畫出對(duì)稱軸

(2)求拋物線與坐標(biāo)軸的交點(diǎn):

當(dāng)拋物線與x軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱點(diǎn)D。將這五個(gè)點(diǎn)按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數(shù)的圖像。

當(dāng)拋物線與x軸只有一個(gè)交點(diǎn)或無交點(diǎn)時(shí),描出拋物線與y軸的交點(diǎn)C及對(duì)稱點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對(duì)對(duì)稱點(diǎn)A、B,然后順次連接五點(diǎn),畫出二次函數(shù)的圖像。

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇3

一、重點(diǎn)

從現(xiàn)實(shí)物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點(diǎn);

正確判定圍成立體圖形的面是平面還是曲面,探索點(diǎn)、線、面、體之間的關(guān)系是重點(diǎn);

畫一條線段等于已知線段,比較兩條線段的長(zhǎng)短是一個(gè)重點(diǎn),在現(xiàn)實(shí)情境中,了解線段的性質(zhì)兩點(diǎn)之間,線段最短是另一個(gè)重點(diǎn)。

二、難點(diǎn)

立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn);

探索點(diǎn)、線、面、體運(yùn)動(dòng)變化后形成的圖形是難點(diǎn);

畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長(zhǎng)短是難點(diǎn)。

三、知識(shí)點(diǎn)、概念總結(jié)

幾何圖形:點(diǎn)、線、面、體這些可幫助人們有效的刻畫錯(cuò)綜復(fù)雜的世界,它們都稱為幾何圖形。從實(shí)物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇4

1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡(jiǎn)分式.

3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分.

4.分式約分中注意正確運(yùn)用乘方的符號(hào)法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母帶符號(hào)的n次方,可按分式符號(hào)法則,變成整個(gè)分式的符號(hào),然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡(jiǎn)單的分式之分子分母可直接乘方.

6.注意混合運(yùn)算中應(yīng)先算括號(hào),再算乘方,然后乘除,最后算加減.

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇5

1.旋轉(zhuǎn)和平移

平移和旋轉(zhuǎn)是幾何中全等變換的一種重要的方式,其中旋轉(zhuǎn)是對(duì)大家?guī)缀巫兓芰M(jìn)行考察的常用手段。

旋轉(zhuǎn)問題之所以難,就是因?yàn)樗ㄟ^旋轉(zhuǎn)使得圖形中出現(xiàn)很多相等的邊和相等的角,但是這不是圖中直接告訴的,是需要大家自己發(fā)現(xiàn)的,而旋轉(zhuǎn)與后面的二次函數(shù)、反比例函數(shù)、四邊形等知識(shí)結(jié)合在一起,會(huì)使的題目靈活性非常強(qiáng),所以這一塊在學(xué)基礎(chǔ)知識(shí)的時(shí)候一定要牢固把握。

2.平行四邊形

平行四邊形,是學(xué)習(xí)矩形、菱形、正方形的基礎(chǔ),他的判定方式有五種,在實(shí)際應(yīng)用的時(shí)候,同學(xué)們往往難以決定到底要采取哪種方式,這就需要同學(xué)們根據(jù)圖形靈活的選擇,不同的辦法進(jìn)行解決。

3.特殊平行四邊形行

特殊平行四邊形是初三的內(nèi)容,但是很多地方都把它提到初二來講。這部分知識(shí)靈活性強(qiáng),變化大,綜合難度高,往往是同學(xué)們覺得幾何難學(xué)的開端。解決的辦法就是把他們的性質(zhì)和判定列表寫出來,由于表述非常的類似和接近,記憶起來比較困難。這就需要同學(xué)們運(yùn)用對(duì)比分析的方法,搞清楚這三種圖形各自的性質(zhì)和判定,這樣才能在應(yīng)用的時(shí)候不至于混淆。

整式

1.整式:整式為單項(xiàng)式和多項(xiàng)式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運(yùn)算,但在整式中除數(shù)不能含有字母。

2.乘法

(1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。

(2)冪的乘方,底數(shù)不變,指數(shù)相乘。

(3)積的乘方,先把積中的每一個(gè)因數(shù)分別乘方,再把所得的冪相乘。

3.整式的除法

(1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

(2)任何不等于零的數(shù)的零次冪為1。

分式

1.一般地,如果A、B(B不等于零)表示兩個(gè)整式,且B中含有字母,那么式子A/B就叫做分式,其中A稱為分子,B稱為分母。

2.分式條件

(1)分式有意義條件:分母不為0。

(2)分式值為0條件:分子為0且分母不為0。

(3)分式值為正(負(fù))數(shù)條件:分子分母同號(hào)得正,異號(hào)得負(fù)。

(4)分式值為1的條件:分子=分母≠0。

(5)分式值為-1的條件:分子分母互為相反數(shù),且都不為0。

二次根式

1.一般地,形如√a的代數(shù)式叫做二次根式,其中,a叫做被開方數(shù)。當(dāng)a≥0時(shí),√a表示a的算術(shù)平方根;當(dāng)a小于0時(shí),√a的值為純虛數(shù)。

2.二次根式的加減法

(1)同類二次根式:一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式。

(2)合并同類二次根式:把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式。

(3)二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開方數(shù)相同的進(jìn)行合并。

3.二次根式的乘除法

二次根式相乘除,把被開方數(shù)相乘除,根指數(shù)不變,再把結(jié)果化為最簡(jiǎn)二次根式。

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇6

直線(Straight line)是幾何學(xué)基本概念,是點(diǎn)在空間內(nèi)沿相同或相反方向運(yùn)動(dòng)的軌跡?;蛘叨x為:曲率最小的曲線(以無限長(zhǎng)為半徑的圓弧)。

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。

求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無解時(shí),二直線平行;有無窮多解時(shí),二直線重合;只有一解時(shí),二直線相交于一點(diǎn)。常用直線與 X 軸正向的夾角( 叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對(duì)于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。

在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

空間直線的方向用一個(gè)與該直線平行的非零向量來表示,該向量稱為這條直線的一個(gè)方向向量。直線在空間中的位置, 由它經(jīng)過的空間一點(diǎn)及它的一個(gè)方向向量完全確定。在歐幾里得幾何學(xué)中,直線只是一個(gè)直觀的幾何對(duì)象。在建立歐幾里得幾何學(xué)的公理體系時(shí),直線與點(diǎn)、平面等都是不加定義的,它們之間的關(guān)系則由所給公理刻畫。

在非歐幾何中直線指連接兩點(diǎn)間最短的線,又稱短程線。

方向向量:截取直線l上兩點(diǎn)A(l,n,0)和B(k+l,m+n,1)方向向量為:AB=(k,m,1)

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇7

一、 重要概念

1。數(shù)的分類及概念

數(shù)系表:

說明:“分類”的原則:1)相稱(不重、不漏)

2)有標(biāo)準(zhǔn)

2。非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)

常見的非負(fù)數(shù)有:

性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

3。倒數(shù): ①定義及表示法

②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時(shí),1/a1;D。積為1。

4。相反數(shù): ①定義及表示法

②性質(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數(shù)軸上的位置;C。和為0,商為-1。

5。數(shù)軸:①定義(“三要素”)

②作用:A。直觀地比較實(shí)數(shù)的大小;B。明確體現(xiàn)絕對(duì)值意義;C。建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

6。奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

定義及表示:

奇數(shù):2n-1

偶數(shù):2n(n為自然數(shù))

7。絕對(duì)值:①定義(兩種):

代數(shù)定義:

幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。

②│a│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。

學(xué)校初三學(xué)生中考數(shù)學(xué)知識(shí)點(diǎn)模板篇8

概率初步的有關(guān)概念

(1)必然事件是指一定能發(fā)生的事件,或者說發(fā)生的可能性是100%;

(2)不可能事件是指一定不能發(fā)生的事件;

(3)隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件;

(4)隨機(jī)事件的可能性

一般地,隨機(jī)事件發(fā)生的可能性是有大小的,不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同.

(5)概率

一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)P附近,那么這個(gè)常數(shù)P就叫做事件A的概率,記為P(A)=P.

(6)可能性與概率的關(guān)系

事件發(fā)生的可能性越大,它的概率越接近于1,反之事件發(fā)生的可能性越小,則它的概率越接近0.

統(tǒng)計(jì)初步的有關(guān)概念

總體:所要考查對(duì)象的全體叫總體;個(gè)體:總體中每一個(gè)考查對(duì)象.

樣本:從總體中所抽取的一部分個(gè)體叫總體的一個(gè)樣本.

樣本容量:樣本中個(gè)體的數(shù)目.

樣本平均數(shù):樣本中所有個(gè)體的平均數(shù)叫樣本平均數(shù).

總體平均數(shù):總體中所有個(gè)體的平均數(shù)叫做總體平均數(shù).

統(tǒng)計(jì)學(xué)中的基本思想就是用樣本對(duì)總體進(jìn)行估計(jì)、推斷,用樣本的平均水平、波動(dòng)情況、分布規(guī)律等特征估計(jì)總體的平均水平、波動(dòng)情況和分析規(guī)律.


1397331