上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理

彭永0 分享 時(shí)間:

掌握九年級(jí)數(shù)學(xué)的知識(shí)點(diǎn)有助于大家更好的學(xué)習(xí)。上學(xué)期間,大家都沒少背知識(shí)點(diǎn)吧?知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。下面是小編給大家整理的上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理,僅供參考希望能幫助到大家。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇1

1、多項(xiàng)式

有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。

多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。

單項(xiàng)式可以看作是多項(xiàng)式的特例

把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。

在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。

2、多項(xiàng)式的值

任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。

3、多項(xiàng)式的恒等

對(duì)于兩個(gè)一元多項(xiàng)式fx、gx來說,當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為fx==gx,或簡記為fx=gx。

性質(zhì)1如果fx==gx,那么,對(duì)于任一個(gè)數(shù)值a,都有fa=ga。

性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對(duì)應(yīng)相等。

4、一元多項(xiàng)式的根

一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。

多項(xiàng)式的加、減法,乘法

1、多項(xiàng)式的加、減法

2、多項(xiàng)式的乘法

單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對(duì)于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。

3、多項(xiàng)式的乘法

多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇2

不等式的概念

1、不等式:用不等號(hào)表示不等關(guān)系的式子,叫做不等式。

2、不等式的解集:對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。

3、對(duì)于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡稱這個(gè)不等式的解集。

4、求不等式的解集的過程,叫做解不等式。

5、用數(shù)軸表示不等式的方法。

不等式基本性質(zhì)

1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。

2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號(hào)的方向不變。

3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

4、說明:①在一元一次不等式中,不像等式那樣,等號(hào)是不變的,是隨著加或乘的`運(yùn)算改變。②如果不等式乘以0,那么不等號(hào)改為等號(hào)所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

一元一次不等式

1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步驟:1、去分母;2、去括號(hào);3、移項(xiàng);4、合并同類項(xiàng);5、將x項(xiàng)的系數(shù)化為1。

一元一次不等式組

1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。

2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

3、求不等式組的解集的過程,叫做解不等式組。

4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。

5、一元一次不等式組的解法

分別求出不等式組中各個(gè)不等式的解集。

利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。

6、不等式與不等式組

不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

7、不等式的解集:

①能使不等式成立的未知數(shù)的值,叫做不等式的解。

②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

③求不等式解集的過程叫做解不等式。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇3

全套教科書包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。

九年級(jí)上冊(cè)包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊(cè)書內(nèi)容分析如下:

二次根式

學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會(huì)遇到二次根式。“二次根式”一章就來認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。

在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:

注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對(duì)于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減?!岸胃降某顺币还?jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會(huì)二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到

并運(yùn)用它們進(jìn)行二次根式的化簡。

“二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。

一元二次方程

學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時(shí)還會(huì)遇到一種新方程——一元二次方程。“一元二次方程”一章就來認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。

本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對(duì)一元二次方程的解加以體會(huì),并給出一元二次方程的根的概念,“降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

(1)在介紹配方法時(shí),首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對(duì)于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。

(2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

(3)在介紹因式分解法時(shí),首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇4

1、圖形的相似

相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;

兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;

相似比:相似多邊形對(duì)應(yīng)邊的比值。

2、相似三角形

判定:

平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;

如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;

如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;

如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。

3、相似三角形的周長和面積

相似三角形(多邊形)的周長的比等于相似比;

相似三角形(多邊形)的面積的比等于相似比的平方。

4、位似

位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇5

二元一次方程組

1、定義:含有兩個(gè)未知數(shù),并且未知項(xiàng)的次數(shù)是1的整式方程叫做二元一次方程。

2、二元一次方程組的解法

(1)代入法

由一個(gè)二次方程和一個(gè)一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。

(2)因式分解法

在二元二次方程組中,至少有一個(gè)方程可以分解時(shí),可采用因式分解法通過消元降次來解。

(3)配方法

將一個(gè)式子,或一個(gè)式子的某一部分通過恒等變形化為完全平方式或幾個(gè)完全平方式的和。

(4)韋達(dá)定理法

通過韋達(dá)定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。

(5)消常數(shù)項(xiàng)法

當(dāng)方程組的兩個(gè)方程都缺一次項(xiàng)時(shí),可用消去常數(shù)項(xiàng)的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通過“降次”將它化為兩個(gè)一元一次方程。

1、直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).

直接開平方法就是平方的逆運(yùn)算.通常用根號(hào)表示其運(yùn)算結(jié)果.

2、配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。

(1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系數(shù)化1:將二次項(xiàng)系數(shù)化為1

(3)移項(xiàng):將常數(shù)項(xiàng)移到等號(hào)右側(cè)

(4)配方:等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方

(5)變形:將等號(hào)左邊的代數(shù)式寫成完全平方形式

(6)開方:左右同時(shí)開平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然后計(jì)算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時(shí),把各項(xiàng)系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

代數(shù)式

1、代數(shù)式與有理式

用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或字母也是代數(shù)式。

整式和分式統(tǒng)稱為有理式。

2、整式和分式

含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。

沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。

有除法運(yùn)算并且除式中含有字母的有理式叫做分式。

3、單項(xiàng)式與多項(xiàng)式

沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積-包括單獨(dú)的一個(gè)數(shù)或字母)

幾個(gè)單項(xiàng)式的`和,叫做多項(xiàng)式。

說明:

①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。

②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。

4、同類項(xiàng)及其合并

條件:①字母相同;

②相同字母的指數(shù)相同

合并依據(jù):乘法分配律。

5、根式

表示方根的代數(shù)式叫做根式。

含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。

6、同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;

②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

把分母中的根號(hào)劃去叫做分母有理化。

中考九年級(jí)上冊(cè)數(shù)學(xué)學(xué)習(xí)方法

養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣

多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法

中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。

有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

中考九年級(jí)上冊(cè)數(shù)學(xué)學(xué)習(xí)技巧

逐步形成“以我為主”的學(xué)習(xí)模式

數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。

要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇6

1.數(shù)的分類及概念數(shù)系表:

說明:分類的原則:1)相稱(不重、不漏)2)有標(biāo)準(zhǔn)

2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)

性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。

3.倒數(shù):

①定義及表示法

②性質(zhì):A.a1/a(a1);B.1/a中,aC.0

4.相反數(shù):

①定義及表示法

②性質(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

5.數(shù)軸:

①定義(三要素)

②作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)自然數(shù))

定義及表示:

奇數(shù):2n-1

偶數(shù):2n(n為自然數(shù))

7.絕對(duì)值:

①定義(兩種):

代數(shù)定義:

幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。

②│a│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;

③數(shù)a的絕對(duì)值只有一個(gè);

④處理任何類型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇7

1、絕對(duì)值

一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

(1)一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.即:﹝另有兩種寫法﹞

(2)實(shí)數(shù)的絕對(duì)值是一個(gè)非負(fù)數(shù),從數(shù)軸上看,一個(gè)實(shí)數(shù)的絕對(duì)值就是數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離.

(3)幾個(gè)非負(fù)數(shù)的和等于零則每個(gè)非負(fù)數(shù)都等于零。

注意:│a│≥0,符號(hào)"││"是"非負(fù)數(shù)"的標(biāo)志;數(shù)a的絕對(duì)值只有一個(gè);處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號(hào)。

2、解一元二次方程

解一元二次方程的基本思想方法是通過“降次”將它化為兩個(gè)一元一次方程。

(1)直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).

直接開平方法就是平方的逆運(yùn)算.通常用根號(hào)表示其運(yùn)算結(jié)果.

(2)配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。

1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2)系數(shù)化1:將二次項(xiàng)系數(shù)化為1

3)移項(xiàng):將常數(shù)項(xiàng)移到等號(hào)右側(cè)

4)配方:等號(hào)左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方

5)變形:將等號(hào)左邊的代數(shù)式寫成完全平方形式

6)開方:左右同時(shí)開平方

7)求解:整理即可得到原方程的根

(3)公式法

公式法:把一元二次方程化成一般形式,然后計(jì)算判別式△=b2-4ac的值,當(dāng)b2-4ac≥0時(shí),把各項(xiàng)系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

3、圓的必考知識(shí)點(diǎn)

(1)圓

在一個(gè)平面內(nèi),一動(dòng)點(diǎn)以一定點(diǎn)為中心,以一定長度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無數(shù)條對(duì)稱軸。

(2)圓的相關(guān)特點(diǎn)

1)徑

連接圓心和圓上的任意一點(diǎn)的線段叫做半徑,字母表示為r

通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d

直徑所在的直線是圓的對(duì)稱軸。在同一個(gè)圓中,圓的直徑d=2r

2)弦

連接圓上任意兩點(diǎn)的線段叫做弦.在同一個(gè)圓內(nèi)最長的弦是直徑。直徑所在的直線是圓的對(duì)稱軸,因此,圓的對(duì)稱軸有無數(shù)條。

3)弧

圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧,以“⌒”表示。

大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個(gè)字母表示,劣弧一般用兩個(gè)字母表示。優(yōu)弧是所對(duì)圓心角大于180度的弧,劣弧是所對(duì)圓心角小于180度的弧。

在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

4)角

頂點(diǎn)在圓心上的角叫做圓心角。

頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。圓周角等于相同弧所對(duì)的圓心角的一半。

上學(xué)期九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理篇8

不等式的概念

1、不等式:用不等號(hào)表示不等關(guān)系的式子,叫做不等式。

2、不等式的解集:對(duì)于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。

3、對(duì)于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡稱這個(gè)不等式的解集。

4、求不等式的解集的過程,叫做解不等式。

5、用數(shù)軸表示不等式的方法。

不等式基本性質(zhì)

1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變。

2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號(hào)的方向不變。

3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

4、說明:①在一元一次不等式中,不像等式那樣,等號(hào)是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號(hào)改為等號(hào)所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

一元一次不等式

1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步驟:1去分母2去括號(hào)3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。

一元一次不等式組

1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。

2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

3、求不等式組的解集的過程,叫做解不等式組。

4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。

5、一元一次不等式組的解法

1分別求出不等式組中各個(gè)不等式的解集。

2利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。

6、不等式與不等式組

不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

7、不等式的解集:

①能使不等式成立的未知數(shù)的值,叫做不等式的解。

②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

③求不等式解集的過程叫做解不等式。

1391246