高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板
高考數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)有什么格式呢?總結(jié)是在某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,下面是小編給大家整理的高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板,僅供參考希望能幫助到大家。
更多的【高考數(shù)學(xué)知識(shí)點(diǎn)】請點(diǎn)擊下 方↓↓↓
★最新高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)★
★高三高考數(shù)學(xué)復(fù)習(xí)總策略★
★高考數(shù)學(xué)學(xué)習(xí)方法及復(fù)習(xí)策略★
★高考數(shù)學(xué)一輪復(fù)習(xí)策略分享★
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇1
動(dòng)點(diǎn)的軌跡方程動(dòng)點(diǎn)的軌跡方程:在直角坐標(biāo)系中,動(dòng)點(diǎn)所經(jīng)過的軌跡用一個(gè)二元方程f(x,y)=0表示出來。
求動(dòng)點(diǎn)的軌跡方程的基本方法:直接法、定義法、相關(guān)點(diǎn)法、參數(shù)法、交軌法等。
1、直接法:
如果動(dòng)點(diǎn)運(yùn)動(dòng)的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,不需要特殊的技巧,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法;
用直接法求動(dòng)點(diǎn)軌跡一般有建系,設(shè)點(diǎn),列式,化簡,證明五個(gè)步驟,最后的證明可以省略,但要注意“挖”與“補(bǔ)”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。
2、定義法:
利用所學(xué)過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,高考生物,這種方法叫做定義法.這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件。定義法的關(guān)鍵是條件的轉(zhuǎn)化??轉(zhuǎn)化成某一基本軌跡的定義條件;
3、相關(guān)點(diǎn)法:
動(dòng)點(diǎn)所滿足的條件不易表述或求出,但形成軌跡的動(dòng)點(diǎn)P(x,y)卻隨另一動(dòng)點(diǎn)Q(x′,y′)的運(yùn)動(dòng)而有規(guī)律的運(yùn)動(dòng),且動(dòng)點(diǎn)Q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入Q的軌跡方程,然而整理得P的軌跡方程,代入法也稱相關(guān)點(diǎn)法。一般地:定比分點(diǎn)問題,對稱問題或能轉(zhuǎn)化為這兩類的軌跡問題,都可用相關(guān)點(diǎn)法。
4、參數(shù)法:
求軌跡方程有時(shí)很難直接找到動(dòng)點(diǎn)的橫坐標(biāo)、縱坐標(biāo)之間的關(guān)系,則可借助中間變量(參數(shù)),使x,y之間建立起聯(lián)系,然而再從所求式子中消去參數(shù),得出動(dòng)點(diǎn)的軌跡方程。用什么變量為參數(shù),要看動(dòng)點(diǎn)隨什么量的變化而變化,常見的參數(shù)有:斜率、截距、定比、角、點(diǎn)的坐標(biāo)等。要特別注意消參前后保持范圍的等價(jià)性。多參問題中,根據(jù)方程的觀點(diǎn),引入n個(gè)參數(shù),需建立n+1個(gè)方程,才能消參(特殊情況下,能整體處理時(shí),方程個(gè)數(shù)可減少)。
5、交軌法:
求兩動(dòng)曲線交點(diǎn)軌跡時(shí),可由方程直接消去參數(shù),例如求兩動(dòng)直線的交點(diǎn)時(shí)常用此法,也可以引入?yún)?shù)來建立這些動(dòng)曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程??梢哉f是參數(shù)法的一種變種。用交軌法求交點(diǎn)的軌跡方程時(shí),不一定非要求出交點(diǎn)坐標(biāo),只要能消去參數(shù),得到交點(diǎn)的兩個(gè)坐標(biāo)間的關(guān)系即可。交軌法實(shí)際上是參數(shù)法中的一種特殊情況。
求軌跡方程的步驟:
(1)建系,設(shè)點(diǎn)建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)曲線上任意一點(diǎn)的坐標(biāo)為M(x,y);
(2)寫集合寫出符合條件P的點(diǎn)M的集合P(M);
(3)列式用坐標(biāo)表示P(M),列出方程f(x,y)=0;
(4)化簡化方程f(x,y)=0為最簡形式;
(5)證明證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇2
一、間斷點(diǎn)求極限
1、連續(xù)、間斷點(diǎn)以及間斷點(diǎn)的分類:判斷間斷點(diǎn)類型的基礎(chǔ)是求函數(shù)在間斷點(diǎn)處的左右極限;
2、可導(dǎo)和可微,分段函數(shù)在分段點(diǎn)處的導(dǎo)數(shù)或可導(dǎo)性,一律通過導(dǎo)數(shù)定義直接計(jì)算或檢驗(yàn)存在的定義是極限 存在;
3、漸近線,(垂直、水平或斜漸近線);
4、多元函數(shù)積分學(xué),二重極限的討論計(jì)算難度較大,常考查證明極限不存在。
二、下面我們重點(diǎn)講一下數(shù)列極限的典型方法。
(一)重要題型及點(diǎn)撥
1、求數(shù)列極限
求數(shù)列極限可以歸納為以下三種形式。
2、抽象數(shù)列求極限
這類題一般以選擇題的形式出現(xiàn), 因此可以通過舉反例來排除。 此外,也可以按照定義、基本性質(zhì)及運(yùn)算法則直接驗(yàn)證。
(二)求具體數(shù)列的極限,可以參考以下幾種方法:
a、利用單調(diào)有界必收斂準(zhǔn)則求數(shù)列極限。
首先,用數(shù)學(xué)歸納法或不等式的放縮法判斷數(shù)列的單調(diào)性和有界性,進(jìn)而確定極限存在性;其次,通過遞推關(guān)系中取極限,解方程, 從而得到數(shù)列的極限值。
b、利用函數(shù)極限求數(shù)列極限
如果數(shù)列極限能看成某函數(shù)極限的特例,形如,則利用函數(shù)極限和數(shù)列極限的關(guān)系轉(zhuǎn)化為求函數(shù)極限,此時(shí)再用洛必達(dá)法則求解。
(三)求項(xiàng)和或項(xiàng)積數(shù)列的極限,主要有以下幾種方法:
a、利用特殊級數(shù)求和法
如果所求的項(xiàng)和式極限中通項(xiàng)可以通過錯(cuò)位相消或可以轉(zhuǎn)化為極限已知的一些形式,那么通過整理可以直接得出極限結(jié)果。
b、利用冪級數(shù)求和法
若可以找到這個(gè)級數(shù)所對應(yīng)的冪級數(shù),則可以利用冪級數(shù)函數(shù)的方法把它所對應(yīng)的和函數(shù)求出,再根據(jù)這個(gè)極限的形式代入相應(yīng)的變量求出函數(shù)值。
c、利用定積分定義求極限
若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)可用一個(gè)通項(xiàng)表示, 則可以考慮用定積分定義求解數(shù)列極限。
d、利用夾逼定理求極限
若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)不能用一個(gè)通項(xiàng)表示,但是其余項(xiàng)是按遞增或遞減排列的,則可以考慮用夾逼定理求解。
e、求項(xiàng)數(shù)列的積的極限
一般先取對數(shù)化為項(xiàng)和的形式,然后利用求解項(xiàng)和數(shù)列極限的方法進(jìn)行計(jì)算
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇3
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇4
一、聯(lián)結(jié)詞
1.用聯(lián)結(jié)詞且聯(lián)結(jié)命題p和命題q,記作pq,讀作p且q.
2.用聯(lián)結(jié)詞或聯(lián)結(jié)命題p和命題q,記作pq,讀作p或q.
3.對一個(gè)命題p全盤否定,就得到一個(gè)新命題,記作綈p,讀作非p或p的否定.
4.命題pq,pq,綈p的真假判斷:
pq中p、q有一假為假,pq有一真為真,p與非p必定是一真一假.
二、全稱量詞與存在量詞
1.全稱量詞與全稱命題
(1)短語所有的任意一個(gè)在邏輯中通常叫做全稱量詞,并用符號表示.
(2)含有全稱量詞的命題,叫做全稱命題.
(3)全稱命題對M中任意一個(gè)x,有p(x)成立可用符號簡記為xM,p(x),讀作對任意x屬于M,有p(x)成立.
2.存在量詞與特稱命題
(1)短語存在一個(gè)至少有一個(gè)在邏輯中通常叫做存在量詞,并用符號表示.
(2)含有存在量詞的命題,叫做特稱命題.
(3)特稱命題存在M中的一個(gè)x0,使p(x0)成立可用符號簡記為x0M,P(x0),讀作存在M中的元素x0,使p(x0)成立.
三、含有一個(gè)量詞的命題的否定
命題 | 命題的否定 |
xM,p(x) | x0M,綈p(x0) |
x0M,p(x0) | xM,綈p(x) |
四、解題思路
1.邏輯聯(lián)結(jié)詞與集合的關(guān)系
或、且、非三個(gè)邏輯聯(lián)結(jié)詞,對應(yīng)著集合運(yùn)算中的并、交、補(bǔ),因此,常常借助集合的并、交、補(bǔ)的意義來解答由或、且、非三個(gè)聯(lián)結(jié)詞構(gòu)成的命題問題.
2.正確區(qū)別命題的否定與否命題
否命題是對原命題若p,則q的條件和結(jié)論分別加以否定而得到的命題,它既否定其條件,又否定其結(jié)論;命題的否定即非p,只是否定命題p的結(jié)論. 命題的否定與原命題的真假總是對立的,即兩者中有且只有一個(gè)為真,而原命題與否命題的真假無必然聯(lián)系.
3.全稱命題真假的判斷方法
(1)要判斷一個(gè)全稱命題是真命題,必須對限定的集合M中的每一個(gè)元素x,證明p(x)成立;
(2)要判斷一個(gè)全稱命題是假命題,只要能舉出集合M中的一個(gè)特殊值x=x0,使p(x0)不成立即可.
4.特稱命題真假的判斷方法
要判斷一個(gè)特稱命題是真命題,只要在限定的集合M中,找到一個(gè)x=x0,使p(x0)成立即可,否則這一特稱命題就是假命題.
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇5
數(shù)學(xué)圓的知識(shí)點(diǎn)
1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
圓--⊙半徑—r弧--⌒直徑—d
扇形弧長/圓錐母線—l周長—C面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
1.圓的周長C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長l=nπr/180
4.扇形面積S=nπr?/360=rl/2
5.圓錐側(cè)面積S=πrl
數(shù)學(xué)學(xué)習(xí)方法
1.先看筆記后做作業(yè)。
有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說的理解沒有達(dá)到教師要求的水平。
因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅(jiān)持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時(shí),老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長一段時(shí)間內(nèi),會(huì)造成很大的損失。
2.做題之后加強(qiáng)反思。
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個(gè)問題,并總結(jié)我們自己的收獲。
要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說: 有錢難買回頭看 。做完作業(yè),回頭細(xì)看,價(jià)值極大。這一回顧,是學(xué)習(xí)過程中一個(gè)非常重要的環(huán)節(jié)。
我們應(yīng)該看看我們做得對不對;還有什么解決辦法;問題在知識(shí)體系中的地位是什么;解決辦法的實(shí)質(zhì)是什么;問題中的知識(shí)是否可以與我們所要求的交換,以及我們是否可以作出適當(dāng)?shù)难a(bǔ)充或刪除。有了以上五個(gè)回頭看,解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大??煞Q為事半功倍。
有人認(rèn)為,要想學(xué)好數(shù)學(xué),只要多做題,功到自然成。數(shù)學(xué)要不要刷題?一般說做的題太少,很多熟能生巧的問題就會(huì)無從談起。因此,應(yīng)該適當(dāng)?shù)囟嗨㈩}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。要把提高當(dāng)成自己的目標(biāo),要把自己的活動(dòng)合理地系統(tǒng)地組織起來,要總結(jié)反思,進(jìn)行章節(jié)總結(jié)是非常重要的。
數(shù)學(xué)學(xué)習(xí)技巧
養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項(xiàng)重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯(cuò)誤的。學(xué)生們不得不預(yù)習(xí)課本。我準(zhǔn)備的數(shù)學(xué)教科書不是簡單的閱讀,而是一個(gè)例子,至少十分鐘的思考。在使用前不能通過學(xué)習(xí)知識(shí)解決問題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時(shí),在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對筆記內(nèi)容的查詢。
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇6
一、準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題
概念抽象、符號術(shù)語多是集合單元的一個(gè)顯著特點(diǎn),例如交集、并集、補(bǔ)集的概念及其表示方法,集合與元素的關(guān)系及其表示方法,集合與集合的關(guān)系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關(guān)系和表示方法,都可以作為求解集合問題的依據(jù)、出發(fā)點(diǎn)甚至是突破口。因此,要想學(xué)好集合的內(nèi)容,就必須在準(zhǔn)確地把握集合的概念,熟練地運(yùn)用集合與集合的關(guān)系解決具體問題上下功夫。
二、注意弄清集合元素的性質(zhì),學(xué)會(huì)運(yùn)用元素分析法審視集合的有關(guān)問題
眾所周知,集合可以看成是一些對象的全體,其中的每一個(gè)對象叫做這個(gè)集合的元素。集合中的元素具有“三性”:
(1)、確定性:集合中的元素應(yīng)該是確定的,不能模棱兩可。
(2)、互異性:集合中的元素應(yīng)該是互不相同的,相同的元素在集合中只能算作一個(gè)。
(3)、無序性:集合中的元素是無次序關(guān)系的。
集合的關(guān)系、集合的運(yùn)算等等都是從元素的角度予以定義的。因此,求解集合問題時(shí),抓住元素的特征進(jìn)行分析,就相當(dāng)于牽牛抓住了牛鼻子。
三、體會(huì)集合問題中蘊(yùn)含的數(shù)學(xué)思想方法,掌握解決集合問題的基本規(guī)律
布魯納說過,掌握數(shù)學(xué)思想可使得數(shù)學(xué)更容易理解和記憶,領(lǐng)會(huì)數(shù)學(xué)思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數(shù)學(xué)思想內(nèi)容,例如數(shù)形結(jié)合的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想、正難則反的思想等等,顯得十分活躍。在學(xué)習(xí)過程中,注意對這些數(shù)學(xué)思想進(jìn)行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識(shí),駕馭 集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質(zhì),都具有十分重要的意義。
四、重視空集的特殊性,防止由于忽視空集這一特殊情況導(dǎo)致的解題失誤
空集是一個(gè)十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時(shí)刻注意有無可能存在空集的情況,否則極易導(dǎo)致解題失誤。這一點(diǎn),必須引起我們的高度重視。
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇7
1、課程內(nèi)容:
必修課程由5個(gè)模塊組成:
必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計(jì)、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。
上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識(shí)的發(fā)生、發(fā)展過程和實(shí)際應(yīng)用,而不在技巧與難度上做過高的要求。
此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。
2、重難點(diǎn)及考點(diǎn):
重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)
難點(diǎn):函數(shù)、圓錐曲線
高考相關(guān)考點(diǎn):
⑴集合與簡易邏輯:集合的概念與運(yùn)算、簡易邏輯、充要條件
⑵函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用
⑶數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用
⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用
⑸平面向量:有關(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用
⑹不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用
⑺直線和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量
⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用
⑾概率與統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布
⑿導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用
⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算
高三重點(diǎn)高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)模板篇8
數(shù)學(xué)會(huì)考知識(shí)點(diǎn)
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對數(shù)學(xué)高考強(qiáng)調(diào)對基礎(chǔ)知識(shí)與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識(shí),正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬變。
對數(shù)學(xué)思想和方法的考查是對數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)與數(shù)學(xué)知識(shí)相結(jié)合。
對數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對知識(shí)的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學(xué)考試最終落在解題上。考綱對數(shù)學(xué)思維能力、運(yùn)算能力、空間想象能力以及實(shí)踐能力和創(chuàng)新意識(shí)都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習(xí)必須把解題訓(xùn)練落到實(shí)處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識(shí),多進(jìn)行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對通性通法的認(rèn)識(shí),真正做到解一題,會(huì)一類。
在臨近高考的數(shù)學(xué)復(fù)習(xí)中,考生們更應(yīng)該從三個(gè)層面上整體把握,同步推進(jìn)。
1.知識(shí)層面
也就是對每個(gè)章節(jié)、每個(gè)知識(shí)點(diǎn)的再認(rèn)識(shí)、再記憶、再應(yīng)用。數(shù)學(xué)高考內(nèi)容選修加必修,可歸納為12個(gè)章節(jié),75個(gè)知識(shí)點(diǎn)細(xì)化為160個(gè)小知識(shí)點(diǎn),而這些知識(shí)點(diǎn)又是縱橫交錯(cuò),互相關(guān)聯(lián),是“你中有我,我中有你”的??忌鷤冊谇謇磉@些知識(shí)點(diǎn)時(shí),首先是點(diǎn)點(diǎn)必記,不可遺漏。再是建立相關(guān)聯(lián)的網(wǎng)絡(luò),做到取自一點(diǎn),連成一線,使之橫豎縱橫都逐個(gè)、逐級并網(wǎng)連遍,從而牢固記憶、靈活運(yùn)用。
2.能力層面
從知識(shí)點(diǎn)的掌握到解題能力的形成,是綜合,更是飛躍,將知識(shí)點(diǎn)的內(nèi)容轉(zhuǎn)化為高強(qiáng)的數(shù)學(xué)能力,這要通過大量練習(xí),通過大腦思維、再思維,從而沉淀而得到數(shù)學(xué)思想的精華,就是數(shù)學(xué)解題能力。我們通常說的解題能力、計(jì)算能力、轉(zhuǎn)化問題的能力、閱讀理解題意的能力等等,都來自于千錘百煉的解題之中。
3.創(chuàng)新層面
數(shù)學(xué)解題要?jiǎng)?chuàng)新,首先是思想創(chuàng)新,我們稱之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學(xué)的主線,我們可以用函數(shù)的思想去分析一切數(shù)學(xué)問題,從初等數(shù)學(xué)到高等數(shù)學(xué)、從圖形問題到運(yùn)算問題、從高散型到連續(xù)型、從指數(shù)與對數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來提高題目的難度,用于區(qū)別學(xué)生之間解題能力的差異。我們常常應(yīng)對參數(shù)的策略點(diǎn)是消去參數(shù),化未知為已知;或討論參數(shù),分類找出參數(shù)的含義;或分離參數(shù),將參數(shù)問題化成函數(shù)問題,使問題迎刃而解。這些,我稱之為解題創(chuàng)新之舉。
4.代換層面
還有一類數(shù)學(xué)解題中的創(chuàng)新,是代換,構(gòu)造新函數(shù)新圖形等等,俗稱代換法、構(gòu)造法,這里有更大的思維跨越,在解題的某一階段有時(shí)出現(xiàn)山窮水盡,無計(jì)可施時(shí),用代換與構(gòu)造,就會(huì)使思路豁然開朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學(xué)之美。常見的代換有變量代換,三角代換,整體代換;常用的構(gòu)造有構(gòu)造函數(shù)、構(gòu)造圖形、構(gòu)造數(shù)列、構(gòu)造不等式、構(gòu)造相關(guān)模型等等。
數(shù)學(xué)學(xué)習(xí)方法
1.“方程”思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系。初中階段最重要的數(shù)量關(guān)系是平等關(guān)系,其次是不平等關(guān)系。最常見的等價(jià)關(guān)系是“方程”。例如,在等速運(yùn)動(dòng)中,距離、速度和時(shí)間之間存在等價(jià)關(guān)系,可以建立相關(guān)方程:速度時(shí)間=距離。在這樣的方程中,通常會(huì)有已知的量和未知量。含有這種未知量的方程是“方程”,它可以從方程中已知的量導(dǎo)出。未知量的過程是求解方程的過程。我們在小學(xué)時(shí)接觸過簡單的方程,而在初中第一年,我們系統(tǒng)地學(xué)習(xí)解一變量的第一個(gè)方程,并總結(jié)出解一變量的第一個(gè)方程的五個(gè)步驟。如果我們學(xué)習(xí)并掌握這五個(gè)步驟,任何一個(gè)等式都能順利地解決。在2年級和3年級,我們還將學(xué)習(xí)解決二次方程、二次方程和簡單三角方程。在高中,我們還學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程、參數(shù)方程、極坐標(biāo)方程等。求解這些方程的思想幾乎是相同的。通過一些方法,將它們轉(zhuǎn)化為一元一階方程或一元二次方程的形式,然后通過求解一元一階方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化學(xué)中的化學(xué)平衡方程以及大量實(shí)際應(yīng)用都需要建立方程和求解方程才能得到結(jié)果。因此,學(xué)生必須學(xué)會(huì)如何解一維一階方程和一維二階方程,然后才能學(xué)好其他形式的方程。
所謂的“方程”思想是數(shù)學(xué)問題,特別是未知現(xiàn)實(shí)見面和已知數(shù)量的復(fù)雜關(guān)系,善于利用“方程”的觀點(diǎn)建立相關(guān)方程,然后利用求解方程的方法來解決這個(gè)問題。
2.“數(shù)與形相結(jié)合”的思想
數(shù)字和形狀在世界各地隨處可見。任何東西,除去它的定性方面,都是留給數(shù)學(xué)研究的,只有形狀和尺寸的屬性。代數(shù)和幾何是初中數(shù)學(xué)的兩個(gè)分支。然而,代數(shù)的研究依賴于“形式”,而幾何學(xué)則依賴于“數(shù)”,而“數(shù)與形的結(jié)合”則是一種趨勢。我們學(xué)得越多,“數(shù)字”和“形狀”就越不可分割,在高中時(shí),“數(shù)字”和“形狀”是密不可分的。有一門關(guān)于用代數(shù)方法研究幾何問題的課程,叫做“分析幾何”。第三年,平面笛卡爾坐標(biāo)系建立后,函數(shù)的研究就離不開圖像。通過圖像的幫助,很容易找到問題的關(guān)鍵點(diǎn),解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,應(yīng)重視“數(shù)與形相結(jié)合”的思維訓(xùn)練。只要任何問題都與“形狀”有關(guān),就應(yīng)該根據(jù)主題的含義起草一個(gè)草圖來分析它。這樣做不僅是直觀的,而且是全面的。誠信強(qiáng),容易找到切入點(diǎn),對解決問題有很大的益處。品嘗甜味的人會(huì)逐漸養(yǎng)成“數(shù)形結(jié)合”的好習(xí)慣。
數(shù)學(xué)學(xué)習(xí)技巧
1.按部就班
數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個(gè)環(huán)節(jié)脫節(jié)都會(huì)影響整個(gè)學(xué)習(xí)的進(jìn)程。所以,平時(shí)學(xué)習(xí)不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
2.強(qiáng)調(diào)理解
概念、定理、公式要在理解的基礎(chǔ)上記憶。每新學(xué)一個(gè)定理,嘗試先不看答案,做一次例題,看是否能正確運(yùn)用新定理;若不行,則對照答案,加深對定理的理解。
3.基本訓(xùn)練
學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時(shí)多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓(xùn)練要做到有的放矢。
4.重視錯(cuò)誤
訂一個(gè)錯(cuò)題本,專門搜集自己的錯(cuò)題,這些往往就是自己的薄弱之處。復(fù)習(xí)時(shí),這個(gè)錯(cuò)題本也就成了寶貴的復(fù)習(xí)資料。
數(shù)學(xué)的學(xué)習(xí)有一個(gè)循序漸進(jìn)的過程,妄想一步登天是不現(xiàn)實(shí)的。熟記書本內(nèi)容后將書后習(xí)題認(rèn)真寫好,有些同學(xué)可能認(rèn)為書后習(xí)題太簡單不值得做,這種想法是極不可取的,書后習(xí)題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴(yán)整,公式定理能夠運(yùn)用的恰如其分,以減少考試中無謂的失分。