六年級上冊數(shù)學(xué)知識點歸納精選

彭永0 分享 時間:

你知道哪些數(shù)學(xué)知識點是真正對我們有幫助的嗎?在日常過程學(xué)習(xí)中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點有時候特指教科書上或考試的知識。下面是小編給大家整理的六年級上冊數(shù)學(xué)知識點歸納精選,僅供參考希望能幫助到大家。

六年級上冊數(shù)學(xué)知識點歸納精選

六年級上冊數(shù)學(xué)知識點歸納精選篇1

1.理解比例的意義和基本性質(zhì),會解比例。

2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。

3.認識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標(biāo)系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。

4.了解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。

5.認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。

6.滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育。

7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:

8.組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。

9.比例的性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

10.解比例:根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。

求比例中的未知項,叫做解比例。

例如:3:x=4:8,內(nèi)項乘內(nèi)項,外項乘外項,則:4x=3×8,解得x=6。

11.正比例和反比例:

(1)成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)

例如:

①速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。

②圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。

③圓的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。

④y=5x,y和x成正比例,因為:y÷x=5(一定)。

⑤每天看的頁數(shù)一定,總頁數(shù)和天數(shù)成正比例,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。

(2)成反比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。

用字母表示x×y=k(一定)

例如:①、路程一定,速度和時間成反比例,因為:速度×?xí)r間=路程(一定)。

②總價一定,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定)。

③長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。

④40÷x=y,x和y成反比例,因為:x×y=40(一定)。

⑤煤的總量一定,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定)。

12.圖上距離:實際距離=比例尺;

例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最后求得比例尺是1:200000。

13.實際距離=圖上距離÷比例尺;

例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。

14.圖上距離=實際距離×比例尺;

例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)

圓柱和圓錐知識點

1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側(cè)面和高。認識圓錐的底面和高。

2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。

3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學(xué)生的空間觀念。

4、圓柱的兩個圓面叫做底面,周圍的面叫做側(cè)面,底面是平面,側(cè)面是曲面,。

5、圓柱的側(cè)面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當(dāng)?shù)酌嬷荛L和高相等時,側(cè)面沿高展開后是一個正方形。

6、圓柱的表面積=圓柱的側(cè)面積+底面積×2即S表=S側(cè)+S底×2或2πr×h+2×πr2

7、圓柱的側(cè)面積=底面周長×高即S側(cè)=Ch或2πr×h

8、圓柱的`體積=圓柱的底面積×高,即V=sh或πr2×h

(進一法:實際中,使用的材料都要比計算的結(jié)果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。)

9、圓錐只有一個底面,底面是個圓。圓錐的側(cè)面是個曲面。

10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。)

11、把圓錐的側(cè)面展開得到一個扇形。

12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷3

13、常見的圓柱圓錐解決問題:

①、壓路機壓過路面面積(求側(cè)面積);

②、壓路機壓過路面長度(求底面周長);

③、水桶鐵皮(求側(cè)面積和一個底面積);

④、廚師帽(求側(cè)面積和一個底面積);通風(fēng)管(求側(cè)面積)。

統(tǒng)計圖的知識點

(一)意義:用點線面積等來表示相關(guān)的量之間的數(shù)量關(guān)系的圖形叫做統(tǒng)計圖。

(二)分類

1、條形統(tǒng)計圖

用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少畫成長短不同的直條,然后把這些直線按照一定的順序排列起來。

優(yōu)點:很容易看出各種數(shù)量的多少。

注意:畫條形統(tǒng)計圖時,直條的寬窄必須相同。

取一個單位長度表示數(shù)量的多少要根據(jù)具體情況而確定;

復(fù)式條形統(tǒng)計圖中表示不同項目的直條,要用不同的線條或顏色區(qū)別開,并在制圖日期下面注明圖例。

制作條形統(tǒng)計圖的一般步驟:

(1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。

(2)在水平射線上,適當(dāng)分配條形的位置,確定直線的寬度和間隔。

(3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。

(4)按照數(shù)據(jù)的大小畫出長短不同的直條,并注明數(shù)量。

2、折線統(tǒng)計圖

用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點,然后把各點用線段順次連接起來。

優(yōu)點:不但可以表示數(shù)量的多少,而且能夠清楚地表示出數(shù)量增減變化的情況。

注意:折線統(tǒng)計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據(jù)年份或月份的間隔來確定。

制作折線統(tǒng)計圖的一般步驟:

(1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。

(2)在水平射線上,適當(dāng)分配折線的位置,確定直線的寬度和間隔。

(3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。

(4)按照數(shù)據(jù)的大小描出各點,再用線段順次連接起來,并注明數(shù)量。

3、扇形統(tǒng)計圖

用整個圓的面積表示總數(shù),用扇形面積表示各部分所占總數(shù)的百分數(shù)。

優(yōu)點:很清楚地表示出各部分同總數(shù)之間的關(guān)系。

制扇形統(tǒng)計圖的一般步驟:

(1)先算出各部分數(shù)量占總量的百分之幾。

(2)再算出表示各部分數(shù)量的扇形的圓心角度數(shù)。

(3)取適當(dāng)?shù)陌霃疆嬕粋€圓,并按照上面算出的圓心角的度數(shù),在圓里畫出各個扇形。

(4)在每個扇形中標(biāo)明所表示的各部分數(shù)量名稱和所占的百分數(shù),并用不同顏色或條紋把各個扇形區(qū)別開。

六年級上冊數(shù)學(xué)知識點歸納精選篇2

1、理解比例的意義和基本性質(zhì),會解比例。

2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。

3、認識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標(biāo)系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。

4、解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。

5、認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。

6、滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育。

7、比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:

8、組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。

9、比例的性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、解比例:根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。

求比例中的未知項,叫做解比例。

例如:3:x=4:8,內(nèi)項乘內(nèi)項,外項乘外項,則:4x=3×8,解得x=6。

11、正比例和反比例:

(1)成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)

例如:

①速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。

②圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。

③圓的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。

④y=5x,y和x成正比例,因為:y÷x=5(一定)。

⑤每天看的頁數(shù)一定,總頁數(shù)和天數(shù)成正比例,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。

(2)成反比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。用字母表示x×y=k(一定)

例如:

①路程一定,速度和時間成反比例,因為:速度×?xí)r間=路程(一定)。

②總價一定,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定)。

③長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。

④40÷x=y,x和y成反比例,因為:x×y=40(一定)。

⑤煤的總量一定,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定)。

12、圖上距離:實際距離=比例尺;

例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最后求得比例尺是1:200000。

13、實際距離=圖上距離÷比例尺;

例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。

14、圖上距離=實際距離×比例尺;

例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)

1、根據(jù)方向和距離可以確定物體在平面圖上的位置。

2、在平面圖上標(biāo)出物體位置的方法:

先用量角器確定方向,再以選定的單位長度為基準(zhǔn)用直尺確定圖上距離,最后找出物體的具體位置,并標(biāo)上名稱。

3、描述路線圖時,要先按行走路線確定每一個參照點,然后以每一個參照點建立方向標(biāo),描述到下一個目標(biāo)所行走的方向和路程,即每一步都要說清是從哪兒走,向什么方向走了多遠到哪兒。

4、繪制路線圖的方法:

(1)確定方向標(biāo)和單位長度。

(2)確定起點的位置。

(3)根據(jù)描述,從起點出發(fā),找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其余每一段都要以前一段的終點為參照點。

(4)以誰為參照點,就以誰為中心畫出“十”字方向標(biāo),然后判斷下一地點的方向和距離。

六年級上冊數(shù)學(xué)知識點歸納精選篇3

分數(shù)乘法

(一)分數(shù)乘法意義:

1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。

“分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。

2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。

“一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)

(二)分數(shù)乘法計算法則:

1、分數(shù)乘整數(shù)的運算法則是:分子與整數(shù)相乘,分母不變。

(1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)

(2)約分是用整數(shù)和下面的分母約掉最大公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結(jié)果必須是最簡分數(shù))。

2、分數(shù)乘分數(shù)的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。

(分子乘分子,分母乘分母)

(1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。

(2)分數(shù)化簡的方法是:分子、分母同時除以它們的最大公因數(shù)。

(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結(jié)果才是最簡單分數(shù))。

(4)分數(shù)的基本性質(zhì):分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。

(三)積與因數(shù)的關(guān)系:

一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當(dāng)b>1時,c>a。

一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當(dāng)b<1時,c>a。

一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當(dāng)b=1時,c=a。

在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。

(四)分數(shù)乘法混合運算

1、分數(shù)乘法混合運算順序與整數(shù)相同,先乘、除后加、減,有括號的先算括號里面的,再算括號外面的。

2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;

運算定律可以使一些計算簡便。

乘法交換律:a×b=b×a

乘法結(jié)合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

1、倒數(shù)是兩個數(shù)的關(guān)系,它們互相依存,不能單獨存在。單獨一個數(shù)不能稱為倒數(shù)。(必須說清誰是誰的倒數(shù))

2、判斷兩個數(shù)是否互為倒數(shù)的唯一標(biāo)準(zhǔn)是:兩數(shù)相乘的積是否為“1”。例如:a×b=1則a、b互為倒數(shù)。

3、求倒數(shù)的方法:

①求分數(shù)的倒數(shù):交換分子、分母的位置。

②求整數(shù)的倒數(shù):整數(shù)分之1。

③求帶分數(shù)的倒數(shù):先化成假分數(shù),再求倒數(shù)。

④求小數(shù)的倒數(shù):先化成分數(shù)再求倒數(shù)。

4、1的倒數(shù)是它本身,因為1×1=1,0沒有倒數(shù),因為任何數(shù)乘0積都是0,且0不能作分母。

5、真分數(shù)的倒數(shù)是假分數(shù),真分數(shù)的倒數(shù)大于1,也大于它本身,假分數(shù)的倒數(shù)小于或等于1。帶分數(shù)的倒數(shù)小于1。

(六)分數(shù)乘法應(yīng)用題——用分數(shù)乘法解決問題

1、求一個數(shù)的幾分之幾是多少?(用乘法)

已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。

2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應(yīng)的量,或者“占”“是”“比”字后面的量是單位“1”。

3、什么是速度?

速度是單位時間內(nèi)行駛的路程。

速度=路程÷時間;時間=路程÷速度;路程=速度×?xí)r間。

單位時間指的是1小時1分鐘1秒等這樣的大小為1的時間單位,每分鐘、每小時、每秒鐘等。

4、求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙;少:(乙-甲)÷乙。

六年級上冊數(shù)學(xué)知識點歸納精選篇4

比:兩個數(shù)相除也叫兩個數(shù)的比

1、比式中,比號(∶)前面的數(shù)叫前項,比號后面的項叫做后項,比號相當(dāng)于除號,比的前項除以后項的商叫做比值。

連比如:3:4:5讀作:3比4比5

2、比表示的是兩個數(shù)的關(guān)系,可以用分數(shù)表示,寫成分數(shù)的形式,讀作幾比幾。

例:12∶20,讀作:12比20

區(qū)分比和比值:比值是一個數(shù),通常用分數(shù)表示,也可以是整數(shù)、小數(shù)。

比是一個式子,表示兩個數(shù)的關(guān)系,可以寫成比,也可以寫成分數(shù)的形式。

3、比的基本性質(zhì):比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變。

4、化簡比:化簡之后結(jié)果還是一個比,不是一個數(shù)。

(1)用比的前項和后項同時除以它們的最大公約數(shù)。

(2)兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。也可以求出比值再寫成比的形式。

(3)兩個小數(shù)的比,向右移動小數(shù)點的位置,也是先化成整數(shù)比。

5、求比值:把比號寫成除號再計算,結(jié)果是一個數(shù)(或分數(shù)),相當(dāng)于商,不是比。

6、比和除法、分數(shù)的區(qū)別:

除法:被除數(shù)除號(÷)除數(shù)(不能為0)商不變性質(zhì)除法是一種運算。

分數(shù):分子分數(shù)線(—)分母(不能為0)分數(shù)的基本性質(zhì)分數(shù)是一個數(shù)。

比:前項比號(∶)后項(不能為0)比的基本性質(zhì)比表示兩個數(shù)的關(guān)系。

商不變性質(zhì):被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。

分數(shù)的基本性質(zhì):分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)除法和比的應(yīng)用:

1、已知單位“1”的量用乘法。

2、未知單位“1”的量用除法。

3、分數(shù)應(yīng)用題基本數(shù)量關(guān)系(把分數(shù)看成比)

(1)甲是乙的幾分之幾?

甲=乙×幾分之幾乙=甲÷幾分之幾幾分之幾=甲÷乙

(2)甲比乙多(少)幾分之幾?

4、按比例分配:把一個量按一定的'比分配的方法叫做按比例分配。

5、畫線段圖:

(1)找出單位“1”的量,先畫出單位“1”,標(biāo)出已知和未知。

(2)分析數(shù)量關(guān)系。

(3)找等量關(guān)系。

(4)列方程。

兩個量的關(guān)系畫兩條線段圖,部分和整體的關(guān)系畫一條線段圖。

六年級上冊數(shù)學(xué)知識點歸納精選篇5

一、分數(shù)除法的意義:

分數(shù)除法是分數(shù)乘法的逆運算,已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。

二、分數(shù)除法計算法則:

除以一個數(shù)(0除外),等于乘上這個數(shù)的倒數(shù)。

1、被除數(shù)÷除數(shù)=被除數(shù)×除數(shù)的倒數(shù)。

2、除法轉(zhuǎn)化成乘法時,被除數(shù)一定不能變,“÷”變成“×”,除數(shù)變成它的倒數(shù)。

3、分數(shù)除法算式中出現(xiàn)小數(shù)、帶分數(shù)時要先化成分數(shù)、假分數(shù)再計算。

4、被除數(shù)與商的變化規(guī)律:

①除以大于1的數(shù),商小于被除數(shù):a÷b=c當(dāng)b>1時,c<ap=""(a≠0)< p="">

<ap=""(a≠0)< p="">

②除以小于1的數(shù),商大于被除數(shù):a÷b=c當(dāng)b<1時,c>a(a≠0b≠0)

<ap=""(a≠0)< p="">

③除以等于1的數(shù),商等于被除數(shù):a÷b=c當(dāng)b=1時,c=a

三、分數(shù)除法混合運算

1、混合運算用梯等式計算,等號寫在第一個數(shù)字的左下角。

2、運算順序:

①連除:同級運算,按照從左往右的順序進行計算;或者先把所有除法轉(zhuǎn)化成乘法再計算;或者依據(jù)“除以幾個數(shù),等于乘上這幾個數(shù)的積”的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。

②混合運算:沒有括號的先乘、除后加、減,有括號的先算括號里面,再算括號外面。

(a±b)÷c=a÷c±b÷c

小學(xué)生數(shù)學(xué)應(yīng)用題理解能力差怎么辦

培養(yǎng)孩子理解應(yīng)用題意的能力

孩子對于一些應(yīng)用題目的表述,不能正確的理解其中的意思,也是正常的。應(yīng)用題是小學(xué)低年級數(shù)學(xué)教學(xué)的重點和難點。是小學(xué)生害怕的學(xué)習(xí)內(nèi)容。家長在輔導(dǎo)孩子的過程中,要注意充分利用生活實際與實物場景的方法,克服難點,誘發(fā)學(xué)習(xí)興趣。

課堂緊跟老師

課堂時間的把握,我們都知道,老師是我們學(xué)到知識的最佳途徑之一。只要自己課堂上面把握好時間,那么自己的數(shù)學(xué)成績自然而然地就會提高。上課的時候,千萬不能馬虎大意。這一點是非常的重要,自己平時一定要牢記。

三步糾錯法

很多孩子在做錯題的時候,都只是簡單改正,沒有去思考背后的原因。因此,如果孩子做錯題,要引導(dǎo)他們進行三步糾錯法,從而從根源上解決錯題。

當(dāng)孩子做錯題的時候,要引導(dǎo)他們從這三個方面進行思考:

1、錯在哪里?

2、錯的原因是什么?

3、當(dāng)符合什么條件時,錯誤才能變成正確?

數(shù)學(xué)圖形的變換知識點

1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、成軸對稱圖形的特征和性質(zhì):

①對稱點到對稱軸的距離相等;

②對稱點的連線與對稱軸垂直;

③對稱軸兩邊的圖形大小形狀完全相同。

3、物體旋轉(zhuǎn)時應(yīng)抓住三點:

①旋轉(zhuǎn)中心;

②旋轉(zhuǎn)方向;

③旋轉(zhuǎn)角度。旋轉(zhuǎn)只改變物體的位置,不改變物體的形狀、大小。

六年級上冊數(shù)學(xué)知識點歸納精選篇6

圓的`面積

1、圓的面積:圓所占平面的大小叫做圓的面積。

用字母S表示。

2、一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。

頂點在圓心的角叫做圓心角。

3、圓面積公式的推導(dǎo):

(1)、用逐漸逼近的轉(zhuǎn)化思想: 體現(xiàn)化圓為方,化曲為直;化新為舊,化未知為已知,化復(fù)雜為簡單,化抽象為具體。

(2)、把一個圓等分(偶數(shù)份)成的扇形份數(shù)越多,拼成的圖像越接近長方形。

(3)、拼出的圖形與圓的周長和半徑的關(guān)系。

圓的半徑 = 長方形的寬

圓的周長的一半 = 長方形的長

因為: 長方形面積 = 長 × 寬

所以: 圓的面積 = 圓周長的一半 × 圓的半徑

S圓 = πr × r

圓的面積公式: S圓 = πr2

4、環(huán)形的面積:

一個環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r。(R=r+環(huán)的寬度.)

S環(huán) = πR?-πr? 或

環(huán)形的面積公式: S環(huán) = π(R?-r?)。

5、一個圓,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數(shù)。

而面積擴大或縮小的倍數(shù)是這倍數(shù)的平方倍。 例如:

在同一個圓里,半徑擴大3倍,那么直徑和周長就都擴大3倍,而面積擴大9倍。

6、兩個圓:

半徑比 = 直徑比 = 周長比;而面積比等于這比的平方。 例如:

兩個圓的半徑比是2∶3,那么這兩個圓的直徑比和周長比都是2∶3,而面積比是4∶9

7、任意一個正方形與它內(nèi)切圓的面積之比都是一個固定值,即:4∶π

8、當(dāng)長方形,正方形,圓的周長相等時,圓面積最大,正方形居中,長方形面積最小。

反之,面積相同時,長方形的周長最長,正方形居中,圓周長最短。

9、確定起跑線:

(1)、每條跑道的長度 = 兩個半圓形跑道合成的圓的周長 + 兩個直道的長度。

(2)、每條跑道直道的長度都相等,而各圓周長決定每條跑道的總長度。(因此起跑線不同)

(3)、每相鄰兩個跑道相隔的距離是: 2×π×跑道的寬度

(4)、當(dāng)一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;當(dāng)一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

11、常用各π值結(jié)果:

π = 3.14

2π = 6.28

3π = 9.42

5π = 15.7

6π = 18.84

7π = 21.98

9π = 28.26

10π = 31.4

16π = 50.24

36π = 113.04

64π = 200.96

96π = 301.44

4π = 12.56 8π = 25.12 25π = 78.5

六年級上冊數(shù)學(xué)知識點歸納精選篇7

一、認識圓

1、圓的定義:圓是由曲線圍成的一種平面圖形。

2、圓心:將一張圓形紙片對折兩次,折痕相交于圓中心的一點,這一點叫做圓心。

一般用字母O表示。它到圓上任意一點的距離都相等.

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。

一般用字母r表示。

把圓規(guī)兩腳分開,兩腳之間的距離就是圓的半徑。

4、直徑:通過圓心并且兩端都在圓上的線段叫做直徑。

一般用字母d表示。

直徑是一個圓內(nèi)最長的線段。

5、圓心確定圓的位置,半徑確定圓的大小。

6、在同圓或等圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。

所有的半徑都相等,所有的直徑都相等。

7.在同圓或等圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的

。

用字母表示為:d=2r或r =

8、軸對稱圖形:

如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形是軸對稱圖形。

折痕所在的這條直線叫做對稱軸。(經(jīng)過圓心的任意一條直線或直徑所在的直線)

9、長方形、正方形和圓都是對稱圖形,都有對稱軸。

這些圖形都是軸對稱圖形。

10、只有1一條對稱軸的圖形有:

角、等腰三角形、等腰梯形、扇形、半圓。

只有2條對稱軸的圖形是: 長方形

只有3條對稱軸的圖形是: 等邊三角形

只有4條對稱軸的圖形是: 正方形;

有無數(shù)條對稱軸的圖形是: 圓、圓環(huán)。

二、圓的周長

1、圓的周長:圍成圓的曲線的長度叫做圓的周長。

用字母C表示。

2、圓周率實驗:

在圓形紙片上做個記號,與直尺0刻度對齊,在直尺上滾動一周,求出圓的周長。

發(fā)現(xiàn)一般規(guī)律,就是圓周長與它直徑的比值是一個固定數(shù)(π)。

3.圓周率:任意一個圓的周長與它的直徑的比值是一個固定的數(shù),我們把它叫做圓周率。

用字母π(pai) 表示。

(1)、一個圓的周長總是它直徑的3倍多一些,這個比值是一個固定的數(shù)。

圓周率π是一個無限不循環(huán)小數(shù)。在計算時,一般取π ≈ 3.14。

(2)、在判斷時,圓周長與它直徑的比值是π倍,而不是3.14倍。

(3)、世界上第一個把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。

4、圓的周長公式:

C= πd d = C ÷π

或C=2π r r = C ÷ 2π

5、在一個正方形里畫一個最大的圓,圓的直徑等于正方形的邊長。

在一個長方形里畫一個最大的圓,圓的直徑等于長方形的寬。

6、區(qū)分周長的一半和半圓的周長:

(1) 周長的一半:等于圓的周長÷2 計算方法:2π r ÷ 2 即 π r

(2)半圓的周長:等于圓的周長的一半加直徑。 計算方法:πr+2r

六年級上冊數(shù)學(xué)知識點歸納精選篇8

一、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù)。百分數(shù)又叫百分比或百分率,百分數(shù)不能帶單位。

注意:百分數(shù)是專門用來表示一種特殊的倍比關(guān)系的,表示兩個數(shù)的比。

1、百分數(shù)和分數(shù)的區(qū)別和聯(lián)系:

(1)聯(lián)系:都可以用來表示兩個量的倍比關(guān)系。

(2)區(qū)別:意義不同:百分數(shù)只表示倍比關(guān)系,不表示具體數(shù)量,所以不能帶單位。分數(shù)不僅表示倍比關(guān)系,還能帶單位表示具體數(shù)量。百分數(shù)的分子可以是小數(shù),分數(shù)的分子只可以是整數(shù)。

注意:百分數(shù)在生活中應(yīng)用廣泛,所涉及問題基本和分數(shù)問題相同,分母是100的分數(shù)并不是百分數(shù),必須把分母寫成“%”才是百分數(shù),所以“分母是100的分數(shù)就是百分數(shù)”這句話是錯誤的。“%”的兩個0要小寫,不要與百分數(shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小數(shù)、分數(shù)、百分數(shù)之間的互化

(1)百分數(shù)化小數(shù):小數(shù)點向左移動兩位,去掉“%”。

(2)小數(shù)化百分數(shù):小數(shù)點向右移動兩位,添上“%”。

(3)百分數(shù)化分數(shù):先把百分數(shù)寫成分母是100的分數(shù),然后再化簡成最簡分數(shù)。

(4)分數(shù)化百分數(shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分數(shù)。

(5)小數(shù)化分數(shù):把小數(shù)成分母是10、100、1000等的分數(shù)再化簡。

(6)分數(shù)化小數(shù):分子除以分母。

二、百分數(shù)應(yīng)用題

1、求常見的百分率,如:達標(biāo)率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數(shù)是另一個數(shù)的百分之幾。

2、求一個數(shù)比另一個數(shù)多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個數(shù)的百分之幾是多少。

一個數(shù)(單位“1”)×百分率

4、已知一個數(shù)的百分之幾是多少,求這個數(shù)。

部分量÷百分率=一個數(shù)(單位“1”)

5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣、成數(shù)=幾分之幾、百分之幾、小數(shù)

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八點五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半價

6、利率

(1)存入銀行的錢叫做本金。

(2)取款時銀行多支付的錢叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×?xí)r間

稅后利息=利息-利息的應(yīng)納稅額=利息-利息×5%

注:國債和教育儲蓄的利息不納稅

7、百分數(shù)應(yīng)用題型分類

(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

1387049