必修二數(shù)學(xué)第三章知識(shí)點(diǎn)歸納
學(xué)好數(shù)學(xué)要善于總結(jié)自己掌握的數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了數(shù)學(xué)的解題技巧。做到總結(jié)和歸納是學(xué)會(huì)數(shù)學(xué)的關(guān)鍵。下面是小編整理的必修二數(shù)學(xué)第三章知識(shí)點(diǎn)歸納,僅供參考希望能夠幫助到大家。
必修二數(shù)學(xué)第三章知識(shí)點(diǎn)歸納
1直線方程形式
一般式:Ax+By+C=0(AB≠0)
斜截式:y=kx+b(k是斜率b是x軸截距)
點(diǎn)斜式:y-y1=k(x-x1)(直線過定點(diǎn)(x1,y1))
兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(diǎn)(x1,y1),(x2,y2))
截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
做題過程中,點(diǎn)斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
在與圓及圓錐曲線結(jié)合的過程中,還要用到點(diǎn)到直線距離公式。
2直線方程的局限性
各種不同形式的直線方程的局限性:
(1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線;
(3)截距式不能表示與坐標(biāo)軸平行或過原點(diǎn)的直線;
(4)直線方程的一般式中系數(shù)A、B不能同時(shí)為零。
數(shù)學(xué)直線和圓知識(shí)點(diǎn)
1.直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量)).應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時(shí),即斜率k不存在的情況?
2.知直線縱截距,常設(shè)其方程為或;知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù))或知直線過點(diǎn),常設(shè)其方程為.
(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0.直線兩截距相等 直線的斜率為-1或直線過原點(diǎn);直線兩截距互為相反數(shù) 直線的斜率為1或直線過原點(diǎn);直線兩截距絕對(duì)值相等 直線的斜率為 或直線過原點(diǎn).
(3)在解析幾何中,研究?jī)蓷l直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合.
3.相交兩直線的夾角和兩直線間的到角是兩個(gè)不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4.線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解.
5.圓的方程:最簡(jiǎn)方程 ;標(biāo)準(zhǔn)方程 ;
6.解決直線與圓的關(guān)系問題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形,切線長(zhǎng)定理、割線定理、弦切角定理等等)的作用!”
(1)過圓 上一點(diǎn) 圓的切線方程
過圓 上一點(diǎn) 圓的切線方程
過圓 上一點(diǎn) 圓的切線方程
如果點(diǎn)在圓外,那么上述直線方程表示過點(diǎn) 兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程.
如果點(diǎn)在圓內(nèi),那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程, (為圓心 到直線的距離).
7.曲線與的交點(diǎn)坐標(biāo)方程組的解;
過兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無平方項(xiàng)時(shí),為兩圓公共弦所在直線方程.
如何快速學(xué)好數(shù)學(xué)
新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。
首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。
必修二數(shù)學(xué)第三章知識(shí)點(diǎn)歸納相關(guān)文章:
★ 高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)重點(diǎn)復(fù)習(xí)知識(shí)點(diǎn)歸納5篇
★ 高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)
★ 高三數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)五篇
★ 高考數(shù)學(xué)必考知識(shí)歸納整理大全
★ 小學(xué)二年級(jí)上冊(cè)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)梳理歸納5篇