初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

麗菲0 分享 時(shí)間:

知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。掌握知識(shí)點(diǎn)是我們提高成績的關(guān)鍵!下面是小編為大家精心收集整理的初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn),希望對(duì)大家有所幫助。

初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

(2)有理數(shù)的分類:

2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。

3.相反數(shù):

(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

4.絕對(duì)值:

(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

(2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;

5.有理數(shù)比大小:

(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;

(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;

(3)正數(shù)大于一切負(fù)數(shù);

(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而?。?/p>

(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;

(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

7.有理數(shù)加法法則:

(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a;

(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)。

10.有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。

11.有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;

(2)乘法的結(jié)合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac 。

12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù)。

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當(dāng)n為正偶數(shù)時(shí):(—a)n =an或(a—b)n=(b—a)n 。

14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位。

17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字。

18.混合運(yùn)算法則:先乘方,后乘除,最后加減。

本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問題。

體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題的能力。教師在講授本章內(nèi)容時(shí),應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。

2、幾種幾何圖形的重心:

⑴ 線段的重心就是線段的中點(diǎn);

⑵ 平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn);

⑶ 三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;

⑷ 任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個(gè)多邊形的重心。

提示:

⑴ 無論幾何圖形的形狀如何,重心都有且只有一個(gè);

⑵ 從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。

3、常見圖形重心的性質(zhì):

⑴ 線段的重心把線段分為兩等份;

⑵ 平行四邊形的重心把對(duì)角線分為兩等份;

⑶ 三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對(duì)邊中點(diǎn)距離占1份)。

上面對(duì)重心知識(shí)點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識(shí)。

初中數(shù)學(xué)必背知識(shí)點(diǎn)

一、角的定義

“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

二、角的換算:1周角=2平角=4直角=360°;

1平角=2直角=180°;

1直角=90°;

1度=60分=3600秒(即:1°=60′=3600″);

1分=60秒(即:1′=60″).

三、余角、補(bǔ)角的概念和性質(zhì):

概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。

如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。

說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。

性質(zhì):同角(或等角)的余角相等;

同角(或等角)的補(bǔ)角相等。

四、角的比較方法:

角的大小比較,有兩種方法:

(1)度量法(利用量角器);

(2)疊合法(利用圓規(guī)和直尺)。

五、角平分線:從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。

常見考法

(1)考查與時(shí)鐘有關(guān)的問題;

(2)角的計(jì)算與度量。

誤區(qū)提醒

角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。

初中數(shù)學(xué)定理歸納

1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

7、同圓或等圓的半徑相等

8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

12、①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離d>r

13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

20、①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-rr)

④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

初中數(shù)學(xué)公式大全

1、一元二次方程解法:

(1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0

若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無解

若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a2-b2=0→(a+b)(a-b)=0

②運(yùn)用公式法:

完全平方公式:a2±2ab+b2=0→(a±b)2=0

③十字相乘法

2、銳角三角函數(shù)定義

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

正弦(sin):對(duì)邊比斜邊,即sinA=a/c;

余弦(cos):鄰邊比斜邊,即cosA=b/c;

正切(tan):對(duì)邊比鄰邊,即tanA=a/b;

余切(cot):鄰邊比對(duì)邊,即cotA=b/a;

3、積的關(guān)系

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

4、倒數(shù)關(guān)系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

5、兩角和差公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

1554001