中考數(shù)學知識點總結(jié)
不積跬步,無以至千里;不積小流,無以成江海。對于考試而言,每天進步一點點,基礎扎實一點點,通過考試就會更容易一點點。以下是小編為大家?guī)淼闹锌紨?shù)學知識點總結(jié)通用,歡迎參閱呀!
中考數(shù)學知識點總結(jié)通用
數(shù)與式
易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關概念理解錯誤,相反數(shù)、倒數(shù)、絕對值的意義概念混淆。以及絕對值與數(shù)的分類。每年選擇必考。
易錯點2:實數(shù)的運算要掌握好與實數(shù)有關的概念、性質(zhì),靈活地運用各種運算律,關鍵是把好符號關;在較復雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。
易錯點3:平方根、算術平方根、立方根的區(qū)別。填空題必考。
易錯點4:求分式值為零時學生易忽略分母不能為零。
易錯點5:分式運算時要注意運算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負數(shù)的性質(zhì):幾個非負數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負指數(shù),二次根式的化簡。
易錯點8:科學記數(shù)法。精確度,有效數(shù)字。這個上海還沒有考過,知道就好!
易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。
方程(組)與不等式(組)
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶X公因式要回頭檢驗!
易錯點3:運用不等式的性質(zhì)3時,容易忘記改不改變符號的方向而導致結(jié)果出錯。
易錯點4:關于一元二次方程的取值范圍的題目易忽視二次項系數(shù)不為0導致出錯。
易錯點5:關于一元一次不等式組有解無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分數(shù)相相當于括號,易忘記根檢驗,導致運算結(jié)果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數(shù)軸。
易錯點8:利用函數(shù)圖象求不等式的解集和方程的解。
函數(shù)
易錯點1:各個待定系數(shù)表示的的意義。
易錯點2:熟練掌握各種函數(shù)解析式的求法,有幾個的待定系數(shù)就要幾個點值。
易錯點3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質(zhì)確定增減性。
易錯點4:兩個變量利用函數(shù)模型解實際問題,注意區(qū)別方程、函數(shù)、不等式模型解決不等領域的問題。
易錯點5:利用函數(shù)圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
易錯點6:與坐標軸交點坐標一定要會求。面積值的求解方法,距離之和的最小值的求解方法,距離之差值的求解方法。
易錯點7:數(shù)形結(jié)合思想方法的運用,還應注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
三角形
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關系,注意其中的“任何兩邊”。最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關注外角性質(zhì)中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結(jié)合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經(jīng)常是相似的基本構(gòu)成要素,以及相似三角形對應高之比等于相似比,對應線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關系,解決與面積有關的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標系,函數(shù),開放性問題,探索性問題結(jié)合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數(shù)的定義中對應線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。
四邊形
易錯點1:平行四邊形的性質(zhì)和判定,如何靈活、恰當?shù)貞?。三角形的穩(wěn)定性與四邊形不穩(wěn)定性。
易錯點2:平行四邊形注意與三角形面積求法的區(qū)分。平行四邊形與特殊平行四邊形之間的轉(zhuǎn)化關系。
易錯點3:運用平行四邊形是中心對稱圖形,過對稱中心的直線把它分成面積相等的兩部分。對角線將四邊形分成面積相等的四部分。
易錯點4:平行四邊形中運用全等三角形和相似三角形的知識解題,突出轉(zhuǎn)化思想的滲透。
易錯點5:矩形、菱形、正方形的概念、性質(zhì)、判定及它們之間的關系,主要考查邊長、對角線長、面積等的計算。矩形與正方形的折疊。
易錯點6:四邊形中的翻折、平移、旋轉(zhuǎn)、剪拼等動手操作性問題,掌握其中的不變與旋轉(zhuǎn)一些性質(zhì)。
易錯點7:梯形問題的主要做輔助線的方法。
圓
易錯點1:對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。
易錯點2:對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。
易錯點3:對切線的定義及性質(zhì)理解不深,不能準確的利用切線的性質(zhì)進行解題以及對切線的判定方法兩種方法使用不熟練。
易錯點4:考查圓與圓的位置關系時,相切有內(nèi)切和外切兩種情況,包括相交也存在兩圓圓心在公共弦同側(cè)和異側(cè)兩種情況,學生很容易忽視其中的一種情況。
易錯點5:與圓有關的位置關系把握好d與R和R+r,R-r之間的關系以及應用上述的方法求解。
易錯點6:圓周角定理是重點,同弧(等弧)所對的圓周角相等,直徑所對的圓周角是直角,90度的圓周角所對的弦是直徑,一條弧所對的圓周角等于它所對的圓心角的一半。
易錯點7:幾個公式一定要牢記:三角形、平行四邊形、菱形、矩形、正方形、梯形、圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側(cè)面積以及全面積以及弧長與底面周長,母線長與扇形的半徑之間的轉(zhuǎn)化關系。
對稱圖形
易錯點1:軸對稱、軸對稱圖形,及中心對稱、中心對稱圖形概念和性質(zhì)把握不準。
易錯點2:圖形的軸對稱或旋轉(zhuǎn)問題,要充分運用其性質(zhì)解題,即運用圖形的“不變性”,在軸對稱和旋轉(zhuǎn)中角的大小不變,線段的長短不變。
易錯點3:將軸對稱與全等混淆,關于直線對稱與關于軸對稱混淆。
統(tǒng)計與概率
易錯點1:中位數(shù)、眾數(shù)、平均數(shù)的有關概念理解不透徹,錯求中位數(shù)、眾數(shù)、平均數(shù)。
易錯點2:在從統(tǒng)計圖獲取信息時,一定要先判斷統(tǒng)計圖的準確性。不規(guī)則的統(tǒng)計圖往往使人產(chǎn)生錯覺,得到不準確的信息。
易錯點3:對普查與抽樣調(diào)查的概念及它們的適用范圍不清楚,造成錯誤。
易錯點4:極差、方差的概念理解不清晰,從而不能正確求出一組數(shù)據(jù)的極差、方差。
易錯點5:概率與頻率的意義理解不清晰,不能正確的求出事件的概率。
易錯點6:平均數(shù)、加權(quán)平均數(shù)、方差公式,扇形統(tǒng)計圖的圓心角與頻率之間的關系,頻數(shù)、頻率、總數(shù)之間的關系。加權(quán)平均數(shù)的權(quán)可以是數(shù)據(jù)、比分、百分數(shù)還可以是概率(或頻率)。
易錯點7:求概率的方法:
(1)簡單事件。
(2)兩步以及兩步以上的簡單事件求概率的方法:利用樹狀或者列表表示各種等可能的情況與事件的可能性的比值。
(3)復雜事件求概率的方法運用頻率估算概率。
易錯點8:判斷是否公平的方法運用概率是否相等,關注頻率與概率的整合。
數(shù)學解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。
4、判別式法與韋達定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。
5、待定系數(shù)法
在解決數(shù)學問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關系。為了解決數(shù)學問題,這種問題解決方法被稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
6、構(gòu)造法
在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學知識相互滲透,有助于解決問題。
數(shù)學經(jīng)常遇到的問題解答
1、要提高數(shù)學成績首先要做什么?
這一點,是很多學生所關注的,要提高數(shù)學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數(shù)學成績先要把基礎夯實。
2、基礎不好怎么學好數(shù)學?
對于基礎差的同學來說,課本是就是學好數(shù)學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。
3、是否要采用題海戰(zhàn)術?
方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學習效果。因此在做題后要總結(jié)至關重要,只有認真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數(shù)學沒有“粗心”只有“不用心”。
為什么要學習數(shù)學
作為一門普及度極廣的學科,數(shù)學在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學產(chǎn)生排斥,認為它枯燥無味,但事實上,數(shù)學是所有學科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數(shù)學的重要性。
首先,數(shù)學可以幫助我們提高邏輯思維能力。數(shù)學的學科性質(zhì)使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。
其次,數(shù)學在現(xiàn)代科技中起著至關重要的作用。在計算機科學、物理學、經(jīng)濟學、工程學等領域,數(shù)學可以幫助我們建立模型、分析數(shù)據(jù)、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數(shù)學概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產(chǎn)品的設計和制造過程,也需要運用到數(shù)學知識,因此學習數(shù)學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數(shù)學也是一種普遍使用的語言,許多學科和領域都使用數(shù)學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數(shù)學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領域,經(jīng)濟學和金融學運用的數(shù)學概念,如微積分、線性代數(shù)和統(tǒng)計學等,使得我們能夠更好地理解經(jīng)濟和財務數(shù)據(jù),并進行決策。因此,學習數(shù)學可以讓我們更好地理解、溝通和交流各個領域的知識。
最后,學習數(shù)學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數(shù)學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數(shù)據(jù)科學、研究機構(gòu)、教育等。數(shù)學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領域脫穎而出。