八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

燁榮0 分享 時(shí)間:

在日常過(guò)程學(xué)習(xí)中,大家最熟悉的就是知識(shí)點(diǎn)吧?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。想要一份整理好的知識(shí)點(diǎn)嗎?以下是小編收集整理的八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

多邊形

1、多邊形的概念:

在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。組成多邊形的各條線段叫做多邊形的邊;每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn);多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角;多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。在定義中應(yīng)注意:

①一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));

②首尾順次相連,二者缺一不可;

③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間多邊形。

2、多邊形的分類:

多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形。

凸多邊形 凹多邊形 各個(gè)角都相等、各個(gè)邊都相等的多邊形叫做正多邊形。

3、多邊形的對(duì)角線:

連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

(1)從n邊形一個(gè)頂點(diǎn)可以引(n-3)條對(duì)角線,將多邊形分成(n-2)個(gè)三角形。

(2)n邊形共有條對(duì)角線。

4、多邊形的內(nèi)角和外角

(1)多邊形的內(nèi)角和公式:n邊形的內(nèi)角和為(n-2)×180°(2)多邊形的外角和等于360°,它與邊數(shù)的多少無(wú)關(guān)。

推論:(1)內(nèi)角和與邊數(shù)成正比:邊數(shù)增加,內(nèi)角和增加;邊數(shù)減少,內(nèi)角和減少。每增加一條邊,內(nèi)角的和就增加180°(反過(guò)來(lái)也成立),且多邊形的內(nèi)角和必須是180°的整數(shù)倍。

(2)多邊形最多有三個(gè)內(nèi)角為銳角,最少?zèng)]有銳角(如矩形);多邊形的外角中最多有三個(gè)鈍角,最少?zèng)]有鈍角。

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)大全

(一)運(yùn)用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項(xiàng)式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

(二)平方差公式

1、平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語(yǔ)言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

(三)因式分解

1、因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

2、因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個(gè)公式叫完全平方公式。

(2)完全平方式的形式和特點(diǎn)

①項(xiàng)數(shù):三項(xiàng)

②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號(hào)相同。

③有一項(xiàng)是這兩個(gè)數(shù)的積的兩倍。

(3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

(5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

八年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

分?jǐn)?shù)的加減法

1、通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)、

2、通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

3、一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

4、通分的依據(jù):分式的基本性質(zhì)。

5、通分的關(guān)鍵:確定幾個(gè)分式的公分母。

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。

6、類比分?jǐn)?shù)的通分得到分式的通分:

把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

8、異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減。

9、同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號(hào)。

10、對(duì)于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

11、異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡(jiǎn)分式,能約分的先約分,使分式簡(jiǎn)化,然后再通分,這樣可使運(yùn)算簡(jiǎn)化。

12、作為最后結(jié)果,如果是分式則應(yīng)該是最簡(jiǎn)分式。

初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

數(shù)學(xué)求定義域口訣

求定義域有講究,四項(xiàng)原則須留意。

負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。

指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次。

限制條件不唯一,滿足多個(gè)不等式。

求定義域要過(guò)關(guān),四項(xiàng)原則須注意。

負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。

分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次。

限制條件不唯一,不等式組求解集。


1484146