2023初中九年級數(shù)學(xué)重要考點知識
數(shù)學(xué)是我們學(xué)習(xí)的主要科目之一,也是理科之首,所以學(xué)好數(shù)學(xué)至關(guān)重要。大家知道九年級的數(shù)學(xué)有哪些重要考點知識嗎?下面是小編為大家整理的關(guān)于2023初中九年級數(shù)學(xué)重要考點知識,歡迎大家來閱讀。
九年級數(shù)學(xué)重要考點知識
一、相似三角形(7個考點)
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:(1)理解相似形的概念;(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算.
注意:被判定平行的一邊不可以作為條件中的對應(yīng)線段成比例使用.
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義.
考點4:相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用.
考點5:三角形的重心
考核要求:知道重心的定義并初步應(yīng)用.
考點6:向量的有關(guān)概念
考點7:向量的加法、減法、實數(shù)與向量相乘、向量的線性運算
考核要求:掌握實數(shù)與向量相乘、向量的線性運算
二、銳角三角比(2個考點)
考點8:銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考點9:解直角三角形及其應(yīng)用
考核要求:(1)理解解直角三角形的意義;(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應(yīng)當(dāng)熟練運用特殊銳角的三角比的值解直角三角形.
三、二次函數(shù)(4個考點)
考點10:函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)
考核要求:(1)通過實例認(rèn)識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;(2)知道常值函數(shù);(3)知道函數(shù)的表示方法,知道符號的意義.
考點11:用待定系數(shù)法求二次函數(shù)的解析式
考核要求:(1)掌握求函數(shù)解析式的方法;(2)在求函數(shù)解析式中熟練運用待定系數(shù)法.
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原.
考點12:畫二次函數(shù)的圖像
考核要求:(1)知道函數(shù)圖像的意義,會在平面直角坐標(biāo)系中用描點法畫函數(shù)圖像;(2)理解二次函數(shù)的圖像,體會數(shù)形結(jié)合思想;(3)會畫二次函數(shù)的大致圖像.
考點13:二次函數(shù)的圖像及其基本性質(zhì)
考核要求:(1)借助圖像的直觀、認(rèn)識和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;(2)會用配方法求二次函數(shù)的頂點坐標(biāo),并說出二次函數(shù)的有關(guān)性質(zhì).
注意:(1)解題時要數(shù)形結(jié)合;(2)二次函數(shù)的平移要化成頂點式.
四、圓的相關(guān)概念(6個考點)
考點14:圓心角、弦、弦心距的概念
考核要求:清楚地認(rèn)識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷.
考點15:圓心角、弧、弦、弦心距之間的關(guān)系
考核要求:認(rèn)清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運用定理進(jìn)行初步的幾何計算和幾何證明.
考點16:垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一.
考點17:直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系
直線與圓的位置關(guān)系可從 與 之間的關(guān)系和交點的個數(shù)這兩個側(cè)面來反映.在圓與圓的位置關(guān)系中,常需要分類討論求解.
考點18:正多邊形的有關(guān)概念和基本性質(zhì)
考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質(zhì)進(jìn)行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構(gòu)成的直角三角形,將正多邊形的計算問題轉(zhuǎn)化為直角三角形的計算問題.
考點19:畫正三、四、六邊形.
考核要求:能用基本作圖工具,正確作出正三、四、六邊形.
五、數(shù)據(jù)整理和概率統(tǒng)計(9個考點)
考點20:確定事件和隨機事件
考核要求:(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;(2)能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機事件.
考點21:事件發(fā)生的可能性大小,事件的概率
考核要求:(1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機事件發(fā)生的可能事件的大小并排出大小順序;(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;(3)理解隨機事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會根據(jù)大數(shù)次試驗所得頻率估計事件的概率.注意:(1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會發(fā)生”等詞語來表述事件發(fā)生的可能性的大小;(2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關(guān),只有當(dāng)試驗次數(shù)足夠大時才能更精確.
考點22:等可能試驗中事件的概率問題及概率計算
本考點的考核要求是(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;(2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區(qū)域面積之比解決簡單的概率問題;(3)形成對概率的初步認(rèn)識,了解機會與風(fēng)險、規(guī)則公平性與決策合理性等簡單概率問題.
在求解概率問題中要注意:(1)計算前要先確定是否為可能事件;(2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整.
考點23:數(shù)據(jù)整理與統(tǒng)計圖表
本考點考核要求是:(1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;(2)結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息.
考點24:統(tǒng)計的含義
本考點的考核要求是:(1)知道統(tǒng)計的意義和一般研究過程;(2)認(rèn)識個體、總體和樣本的區(qū)別,了解樣本估計總體的思想方法.
考點25:平均數(shù)、加權(quán)平均數(shù)的概念和計算
本考點的考核要是:(1)理解平均數(shù)、加權(quán)平均數(shù)的概念;(2)掌握平均數(shù)、加權(quán)平均數(shù)的計算公式.注意:在計算平均數(shù)、加權(quán)平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算準(zhǔn)確率.
考點26:中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念和計算
考核要求:(1)知道中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念;(2)會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差,并能用于解決簡單的統(tǒng)計問題.
注意:當(dāng)一組數(shù)據(jù)中出現(xiàn)極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;(2)求中位數(shù)之前必須先將數(shù)據(jù)排序.
考點27:頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖
考核要求:(1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;(2)會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實際問題.解題時要注意:頻數(shù)、頻率能反映每個對象出現(xiàn)的頻繁程度,但也存在差別:在同一個問題中,頻數(shù)反映的是對象出現(xiàn)頻繁程度的絕對數(shù)據(jù),所有頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁出現(xiàn)的相對數(shù)據(jù),所有的頻率之和是1.
考點28:中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率的應(yīng)用
本考點的考核要是:(1)了解基本統(tǒng)計量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率)的意計算及其應(yīng)用,并掌握其概念和計算方法;(2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計算結(jié)果作出判斷和預(yù)測;(3)能將多個圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會利用各種統(tǒng)計量來進(jìn)行推理和分析,研究解決有關(guān)的實際生活中問題,然后作出合理的解決.
九年級數(shù)學(xué)復(fù)習(xí)內(nèi)容
數(shù)學(xué)可分為四個分支:數(shù)與公式、方程、函數(shù)、幾何。
數(shù)字的和包括有理數(shù)、實數(shù)、積分方程的加減、不等式和不等式組、方程、分?jǐn)?shù)和二次根的乘法和因式分解。
方程包括:一元一次方程、二元一次方程組、一元二次方程。
功能包括:數(shù)據(jù)采集、整理和描述、平面直角坐標(biāo)系、一次函數(shù)、二次函數(shù)、反比例函數(shù)。
幾何包括:初相交線、平行線、三角形、全等三角形、對稱軸、勾股定理、平行四邊形、旋轉(zhuǎn)、圓、相似、銳角三角形、投影和視圖。
數(shù)與公式、方程是初中數(shù)學(xué)的基礎(chǔ),函數(shù)、幾何是初中數(shù)學(xué)的重點和難點,也是考試的重點。
數(shù)字和公式,方程是學(xué)習(xí)函數(shù)的前提,而函數(shù)是初中數(shù)學(xué)的核心,數(shù)學(xué)是最難理解的地方。幾何是學(xué)生觀察圖形和邏輯推導(dǎo)能力的一個單獨分支,我們可以進(jìn)行單獨的學(xué)習(xí)和訓(xùn)練。
然而,在今天的數(shù)學(xué)教學(xué)中,教師只告訴學(xué)生如何應(yīng)用數(shù)學(xué),告訴他們背誦公式、定理和步驟。缺少的是告訴學(xué)生為什么他們有這個公式,為什么他們有這個定理,這種數(shù)學(xué)可以解決什么樣的現(xiàn)實生活問題的能力。
這也是學(xué)習(xí)數(shù)學(xué)過程中最奇怪的現(xiàn)象,學(xué)生往往不知道問題是如何產(chǎn)生的,卻知道如何解決問題,這就是所謂的知其然不知其因。這種錯誤是數(shù)學(xué)老師應(yīng)該注意的問題。
在數(shù)學(xué)學(xué)習(xí)過程中,要有清醒的復(fù)習(xí)意識,逐步養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)該是一個反思性的學(xué)習(xí)過程。
我們應(yīng)該關(guān)注教學(xué)過程,積極體驗知識產(chǎn)生和發(fā)展的過程,理清知識脈絡(luò),理解知識發(fā)生的過程,理解公式、定理和規(guī)律的推導(dǎo)過程,改變死記硬背的方式。
這樣,我們就可以從知識形成和發(fā)展的過程中體會到學(xué)習(xí)知識的樂趣。在解決問題的過程中,我感受到了成功的喜悅。
九年級數(shù)學(xué)知識復(fù)習(xí)
一、 直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從圖形、表示法、界限、端點個數(shù)、基本性質(zhì)等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(zhì)(用線段的基本性質(zhì)論證三角形兩邊之和大于第三邊)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的`平分線及其表示
8.垂線及基本性質(zhì)(利用它證明直角三角形中斜邊大于直角邊)
9.對頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、 三角形
分類:
⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②線的交點三角形的心③性質(zhì)
① 高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法反證法:①反設(shè)②歸謬③結(jié)論
⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來
三、 四邊形
分類表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360
⑵順次連結(jié)各邊中點得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。
⑶外角和:360
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
⑶判定步驟:四邊形平行四邊形矩形正方形
┗菱形
⑷對角線的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結(jié)頂點和對腰中點并延長與底邊相交轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。