高一數(shù)學(xué)教案集合

新華0 分享 時(shí)間:

教案可以幫助教師根據(jù)學(xué)生的實(shí)際情況,面向大多數(shù)學(xué)生,并調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。如何撰寫優(yōu)秀的高一數(shù)學(xué)教案集合?這里分享一些高一數(shù)學(xué)教案集合寫作案例,供大家參考。

高一數(shù)學(xué)教案集合篇1

一、課標(biāo)要求:

理解充分條件、必要條件與充要條件的意義,會(huì)判斷充分條件、必要條件與充要條件.

二、知識(shí)與方法回顧:

1、充分條件、必要條件與充要條件的概念:

2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:

3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:

4、特殊值法:判斷充分條件與必要條件時(shí),往往用特殊值法來否定結(jié)論

5、化歸思想:

表示p等價(jià)于q,等價(jià)命題可以進(jìn)行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時(shí),就可以轉(zhuǎn)化為證明q成立;

這里要注意原命題逆否命題、逆命題否命題只是等價(jià)形式之一,對(duì)于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.

6、數(shù)形結(jié)合思想:

利用韋恩圖(即集合的包含關(guān)系)來判斷充分不必要條件,必要不充分條件,充要條件.

三、基礎(chǔ)訓(xùn)練:

1、設(shè)命題若p則q為假,而若q則p為真,則p是q的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

2、設(shè)集合M,N為是全集U的兩個(gè)子集,則是的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

3、若是實(shí)數(shù),則是的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

四、例題講解

例1已知實(shí)系數(shù)一元二次方程,下列結(jié)論中正確的是()

(1)是這個(gè)方程有實(shí)根的充分不必要條件

(2)是這個(gè)方程有實(shí)根的必要不充分條件

(3)是這個(gè)方程有實(shí)根的.充要條件

(4)是這個(gè)方程有實(shí)根的充分不必要條件

A.(1)(3)B.(3)(4)C.(1)(3)(4)D.(2)(3)(4)

例2(1)已知h0,a,bR,設(shè)命題甲:,命題乙:且,問甲是乙的()

(2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

變式:a=0是直線與平行的條件;

例3如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s

的充分條件,那么命題p是命題q的條件;命題s是命題q的條件;命題r是命題q的條件.

例4設(shè)命題p:4x-31,命題q:x2-(2a+1)x+a(a+1)0,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)a的取值范圍;

例5設(shè)是方程的兩個(gè)實(shí)根,試分析是兩實(shí)根均大于1的什么條件?并給予證明.

五、課堂練習(xí)

1、設(shè)命題p:,命題q:,則p是q的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

2、給出以下四個(gè)命題:①若p則q②若﹁r則﹁q③若r則﹁s

④若﹁s則q若它們都是真命題,則﹁p是s的條件;

3、是否存在實(shí)數(shù)p,使是的充分條件?若存在,求出p的取值范圍;若不存在說明理由.

六、課堂小結(jié):

七、教學(xué)后記:

高三班學(xué)號(hào)姓名日期:月日

1、AB是AB=B的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

2、是的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

3、2x2-5x-30的一個(gè)必要不充分條件是()

A.-

4、2且b是a+b4且ab的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

5、設(shè)a1、b1、c1、a2、b2、c2均為非零實(shí)數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么是M=N的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分又不必要條件

6、若命題A:,命題B:,則命題A是B的條件;

7、設(shè)條件p:x=x,條件q:x2-x,則p是q的條件;

8、方程mx2+2x+1=0至少有一個(gè)負(fù)根的充要條件是;

9、關(guān)于x的方程x2+mx+n=0有兩個(gè)小于1的正根的一個(gè)充要條件是;

10、已知,求證:的充要條件是;

11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)m的取值范圍。

12、已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

(1)方程有兩個(gè)正根的充要條件;

(2)方程至少有一正根的充要條件.

高一數(shù)學(xué)教案集合篇2

【考點(diǎn)闡述】

兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

【考試要求】

(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正確運(yùn)用三角公式,進(jìn)行簡單三角函數(shù)式的化簡、求值和恒等式證明.

【考題分類】

(一)選擇題(共5題)

1.(海南寧夏卷理7)=()

A.B.C.2D.

解:,選C。

2.(山東卷理5文10)已知cos(α-)+sinα=

(A)-(B)(C)-(D)

解:,,

3.(四川卷理3文4)()

(A)(B)(C)(D)

【解】:∵

故選D;

【點(diǎn)評(píng)】:此題重點(diǎn)考察各三角函數(shù)的關(guān)系;

4.(浙江卷理8)若則=()

(A)(B)2(C)(D)

解析:本小題主要考查三角函數(shù)的求值問題。由可知,兩邊同時(shí)除以得平方得,解得或用觀察法.

5.(四川延考理5)已知,則()

(A)(B)(C)(D)

解:,選C

(二)填空題(共2題)

1.(浙江卷文12)若,則_________。

解析:本小題主要考查誘導(dǎo)公式及二倍角公式的應(yīng)用。由可知,;而。答案:

2.(上海春卷6)化簡:.

(三)解答題(共1題)

1.(上海春卷17)已知,求的值.

[解]原式……2分

.……5分

又,,……9分

.……12分文章

高一數(shù)學(xué)教案集合篇3

一、教材分析及處理

函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識(shí)在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識(shí);函數(shù)的概念是運(yùn)動(dòng)變化和對(duì)立統(tǒng)一等觀點(diǎn)在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,《函數(shù)》教學(xué)設(shè)計(jì)。

對(duì)函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識(shí)的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對(duì)應(yīng)語言刻畫的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。

教學(xué)重點(diǎn)是函數(shù)的概念,難點(diǎn)是對(duì)函數(shù)概念的本質(zhì)的理解。

學(xué)生現(xiàn)狀

學(xué)生在第一章的時(shí)候已經(jīng)學(xué)習(xí)了集合的概念,同時(shí)在初中時(shí)已學(xué)過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識(shí)來理解函數(shù)概念,結(jié)合原有的知識(shí)背景,活動(dòng)經(jīng)驗(yàn)和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動(dòng)中,達(dá)到理解知識(shí)、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗(yàn)和情感體驗(yàn),是在教學(xué)設(shè)計(jì)中應(yīng)思考的。

二、教學(xué)三維目標(biāo)分析

1、知識(shí)與技能(重點(diǎn)和難點(diǎn))

(1)、通過實(shí)例讓學(xué)生能夠進(jìn)一步體會(huì)到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識(shí)的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。

(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會(huì)求簡單函數(shù)的定義域、值域、判斷兩個(gè)函數(shù)是否相等等。

(3)、掌握定義域的表示法,如區(qū)間形式等。

(4)、了解映射的概念。

2、過程與方法

函數(shù)的概念及其相關(guān)知識(shí)點(diǎn)較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問題:

(1)、首先通過多媒體給出實(shí)例,在讓學(xué)生以小組的形式開展討論,運(yùn)用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識(shí),找出不同點(diǎn)與相同點(diǎn),實(shí)現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

(2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。

(3)、加強(qiáng)學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會(huì)本節(jié)知識(shí)點(diǎn),也要讓學(xué)生會(huì)自我主動(dòng)學(xué)習(xí)。

3、情感態(tài)度與價(jià)值觀

(1)、通過多媒體給出實(shí)例,學(xué)生小組討論,給出自己的結(jié)論和觀點(diǎn),加上老師的輔助講解,培養(yǎng)學(xué)生的實(shí)踐能力和和大膽創(chuàng)新意識(shí),教案《《函數(shù)》教學(xué)設(shè)計(jì)》。

(2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動(dòng)手能力和小組團(tuán)結(jié)能力。

三、教學(xué)器材

多媒體ppt課件

四、教學(xué)過程

教學(xué)內(nèi)容教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖

《函數(shù)》課題的引入(用時(shí)一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應(yīng)用的廣泛,將同學(xué)們的視線引入函數(shù)的學(xué)習(xí)上聽著悠揚(yáng)的音樂,讓同學(xué)們的視線全注意在老師所講的內(nèi)容上從貼近學(xué)生生活入手,符合學(xué)生的認(rèn)知特點(diǎn)。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數(shù)的世界,體現(xiàn)了新課標(biāo)的理念:從知識(shí)走向生活

知識(shí)回顧:初中所學(xué)習(xí)的函數(shù)知識(shí)(用時(shí)兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認(rèn)真聽老師回顧初中知識(shí),發(fā)現(xiàn)異同在初中知識(shí)的基礎(chǔ)上引導(dǎo)學(xué)生向更深的內(nèi)容探索、求知。即復(fù)習(xí)了所學(xué)內(nèi)容又做了即將所學(xué)內(nèi)容的鋪墊

思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時(shí)四分鐘)給出兩個(gè)簡單的問題讓同學(xué)們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認(rèn)識(shí)函數(shù)結(jié)合老師所回顧的知識(shí),結(jié)合自己所掌握的知識(shí),思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進(jìn),引出本節(jié)主要知識(shí),回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識(shí),前后聯(lián)系、銜接

新知識(shí)的講解:從概念開始講解本節(jié)知識(shí)(用時(shí)三分鐘)詳細(xì)講解函數(shù)的知識(shí),包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識(shí)講解回到問題身上,解決問題

對(duì)提問的回答(用時(shí)五分鐘)引導(dǎo)學(xué)生自己解決開始所提的兩個(gè)問題,然后同個(gè)互動(dòng)給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識(shí)

函數(shù)區(qū)間(用時(shí)五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法

注意點(diǎn)(用時(shí)三分鐘)做個(gè)簡單的的回顧新內(nèi)容,把難點(diǎn)重點(diǎn)提出來,讓同學(xué)們記住通過問題回答,概念解答,把重難點(diǎn)給出,提醒學(xué)生注意內(nèi)容和知識(shí)點(diǎn)

習(xí)題(用時(shí)十分鐘)給出習(xí)題,分析題意在稿紙上簡單作答,回答問題通過習(xí)題練習(xí)明確重難點(diǎn),把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系

映射(用時(shí)兩分鐘)從概念方面講解映射的意義,象與原象在新知識(shí)的基礎(chǔ)上了解更多知識(shí),映射的學(xué)習(xí)給以后的知識(shí)內(nèi)容做更好的鋪墊

小結(jié)(用時(shí)五分鐘)簡單講述本節(jié)的知識(shí)點(diǎn),重難點(diǎn)做筆記前后知識(shí)的連貫,總結(jié),使學(xué)生更明白知識(shí)點(diǎn)

五、教學(xué)評(píng)價(jià)

為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認(rèn)識(shí),獲得認(rèn)識(shí)客觀世界的體驗(yàn),本課采用"突出主題,循序漸進(jìn),反復(fù)應(yīng)用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學(xué)時(shí)采用問題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對(duì)函數(shù)概念的理解也逐層深入,從而準(zhǔn)確理解函數(shù)的概念。函數(shù)引入中的三種對(duì)應(yīng),與初中時(shí)學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對(duì)應(yīng)既是函數(shù)知識(shí)的生長點(diǎn),又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。

在培養(yǎng)學(xué)生的能力上,本課也進(jìn)行了整體設(shè)計(jì),通過探究、思考,培養(yǎng)了學(xué)生的實(shí)踐能力、觀察能力、判斷能力;通過揭示對(duì)象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過實(shí)際問題的解決,培養(yǎng)了學(xué)生的分析問題、解決問題和表達(dá)交流能力;通過案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)與探究能力。

雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學(xué)設(shè)計(jì),學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達(dá)到了課程標(biāo)準(zhǔn)的要求,體現(xiàn)了課改的教學(xué)理念。

高一數(shù)學(xué)教案集合篇4

教學(xué)目標(biāo)

1.知識(shí)與技能:探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)方程寫出圓的坐標(biāo)和圓的半徑。

2.過程與方法:通過圓的標(biāo)準(zhǔn)方程的學(xué)習(xí),掌握求曲線方程的方法,領(lǐng)會(huì)數(shù)形結(jié)合的思想。

3.情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)成功的喜悅。

教學(xué)重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程理解及運(yùn)用

教學(xué)難點(diǎn):根據(jù)不同條件,利用待定系數(shù)求圓的標(biāo)準(zhǔn)方程。

根據(jù)教學(xué)內(nèi)容的特點(diǎn)及高一年級(jí)學(xué)生的年齡、認(rèn)知特征,緊緊抓住課堂知識(shí)的結(jié)構(gòu)關(guān)系,遵循“直觀認(rèn)知――操作體會(huì)――感悟知識(shí)特征――應(yīng)用知識(shí)”的認(rèn)知過程,設(shè)計(jì)出包括:觀察、操作、思考、交流等內(nèi)容的教學(xué)流程。并且充分利用現(xiàn)代化信息技術(shù)的教學(xué)手段提高教學(xué)效率。以此使學(xué)生獲取知識(shí),給學(xué)生獨(dú)立操作、合作交流的機(jī)會(huì)。學(xué)法上注重讓學(xué)生參與方程的推導(dǎo)過程,努力拓展學(xué)生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學(xué)生真正體驗(yàn)知識(shí)的形成過程。

學(xué)習(xí)者分析

高一年級(jí)的學(xué)生從知識(shí)層面上已經(jīng)掌握了圓的相關(guān)性質(zhì);從能力層面具備了一定的觀察、分析和數(shù)據(jù)處理能力,對(duì)數(shù)學(xué)問題有自己個(gè)人的看法;從情感層面上學(xué)生思維活躍積極性高,但他們數(shù)學(xué)應(yīng)用意識(shí)和語言表達(dá)的能力還有待加強(qiáng)。

高一數(shù)學(xué)教案集合篇5

一、指導(dǎo)思想與理論依據(jù)

數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

二、教材分析

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱思想發(fā)現(xiàn)任意角與、、終邊的對(duì)稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

三、學(xué)情分析

本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

四、教學(xué)目標(biāo)

(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;

(2).能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡單的三角函數(shù)求值與化簡;

(3).創(chuàng)新素質(zhì)目標(biāo):通過對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;

(4).個(gè)性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.

五、教學(xué)重點(diǎn)和難點(diǎn)

1.教學(xué)重點(diǎn)

理解并掌握誘導(dǎo)公式.

2.教學(xué)難點(diǎn)

正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.

六、教法學(xué)法以及預(yù)期效果分析

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.

1.教法

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.

2.學(xué)法

“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問題.

在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識(shí)及解決問題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).

3.預(yù)期效果

本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題.

七、教學(xué)流程設(shè)計(jì)

(一)創(chuàng)設(shè)情景

1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;

2.復(fù)習(xí)任意角的三角函數(shù)定義;

3.問題:由,你能否知道sin2100的值嗎?引如新課.

設(shè)計(jì)意圖

自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法.

(二)新知探究

1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;

2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標(biāo)有什么關(guān)系;

3.Sin2100與sin300之間有什么關(guān)系.

設(shè)計(jì)意圖

由特殊問題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.

(三)問題一般化

探究一

1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點(diǎn)對(duì)稱;

2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱;

3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.

設(shè)計(jì)意圖

首先應(yīng)用單位圓,并以對(duì)稱為載體,用聯(lián)系的觀點(diǎn),把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計(jì)提問從特殊到一般,從線對(duì)稱到點(diǎn)對(duì)稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時(shí)也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計(jì)為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)

(四)練習(xí)

利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.

(1).;(2).;(3)..

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

(五)問題變形

由sin3000=-sin600出發(fā),用三角的定義引導(dǎo)學(xué)生求出sin(-3000),Sin1500值,讓學(xué)生聯(lián)想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學(xué)生自主探究

高一數(shù)學(xué)教案集合篇6

一、教材

《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)揭示了知識(shí)的發(fā)生過程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

二、學(xué)情

學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點(diǎn)的坐標(biāo)、直線的方程、圓的方程以及點(diǎn)到直線的距離公式;掌握利用方程組的方法來求直線的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

三、教學(xué)目標(biāo)

(一)知識(shí)與技能目標(biāo)

能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線的距離的方法簡單判斷出直線與圓的關(guān)系。

(二)過程與方法目標(biāo)

經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

(三)情感態(tài)度價(jià)值觀目標(biāo)

激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。

四、教學(xué)重難點(diǎn)

(一)重點(diǎn)

用解析法研究直線與圓的位置關(guān)系。

(二)難點(diǎn)

體會(huì)用解析法解決問題的數(shù)學(xué)思想。

五、教學(xué)方法

根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫板為平臺(tái),通過圖形的動(dòng)態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。

六、教學(xué)過程

(一)導(dǎo)入新課

教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?

教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。

設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

(二)新課教學(xué)——探究新知

教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見解的分析及對(duì)該學(xué)生的鼓勵(lì)。

判斷方法:

(1)定義法:看直線與圓公共點(diǎn)個(gè)數(shù)

即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

(2)比較法:圓心到直線的距離d與圓的半徑r做比較,

(三)合作探究——深化新知

教師進(jìn)一步拋出疑問,對(duì)比兩種方法,由學(xué)生觀察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點(diǎn)到直線的距離,便可以直接利用點(diǎn)到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點(diǎn)的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個(gè)數(shù)確定直線與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。

(四)歸納總結(jié)——鞏固新知

為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

可由方程組的解的不同情況來判斷:

當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線l與圓C相交;

當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線l與圓C相切;

當(dāng)方程組沒有實(shí)數(shù)解時(shí),直線l與圓C相離。

活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過程加以分析完善。通過對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

(五)小結(jié)作業(yè)

在小結(jié)環(huán)節(jié),我會(huì)以口頭提問的方式:

(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

(2)在數(shù)學(xué)問題的解決過程中運(yùn)用了哪些數(shù)學(xué)思想?

設(shè)計(jì)意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。

作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。

七、板書設(shè)計(jì)

我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計(jì)。

高一數(shù)學(xué)教案集合篇7

一元二次不等式的解法

教學(xué)目標(biāo)

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;

(3)了解簡單的分式不等式的解法;

(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;

(5)能夠進(jìn)行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;

(6)通過利用二次函數(shù)的圖象來求解一元二次不等式的解集,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;

(7)通過研究函數(shù)、方程與不等式之間的內(nèi)在聯(lián)系,使學(xué)生認(rèn)識(shí)到事物是相互聯(lián)系、相互轉(zhuǎn)化的,樹立辨證的世界觀.

教學(xué)重點(diǎn):一元二次不等式的解法;

教學(xué)難點(diǎn):弄清一元二次不等式與一元二次方程、二次函數(shù)的關(guān)系.

教與學(xué)過程設(shè)計(jì)

第一課時(shí)

Ⅰ.設(shè)置情境

問題:

①解方程

②作函數(shù) 的圖像

③解不等式

【置疑】在解決上述三問題的基礎(chǔ)上分析,一元一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系。能通過觀察一次函數(shù)的圖像求得一元一次不等式的解集嗎?

【回答】函數(shù)圖像與x軸的交點(diǎn)橫坐標(biāo)為方程的根,不等式 的解集為函數(shù)圖像落在x軸上方部分對(duì)應(yīng)的橫坐標(biāo)。能。

通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數(shù)的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運(yùn)用

在這里我們發(fā)現(xiàn)一元一次方程,一次不等式與一次函數(shù)三者之間有著密切的聯(lián)系。利用這種聯(lián)系(集中反映在相應(yīng)一次函數(shù)的圖像上!)我們可以快速準(zhǔn)確地求出一元一次不等式的解集,類似地,我們能不能將現(xiàn)在要求解的一元二次不等式與二次函數(shù)聯(lián)系起來討論找到其求解方法呢?

Ⅱ.探索與研究

我們現(xiàn)在就結(jié)合不等式 的求解來試一試。(師生共同活動(dòng)用“特殊點(diǎn)法”而非課本上的“列表描點(diǎn)”的方法作出 的圖像,然后請(qǐng)一位程度中下的同學(xué)寫出相應(yīng)一元二次方程及一元二次不等式的解集。)

【答】方程 的解集為

不等式 的解集為

【置疑】哪位同學(xué)還能寫出 的解法?(請(qǐng)一程度差的同學(xué)回答)

【答】不等式 的解集為

我們通過二次函數(shù) 的圖像,不僅求得了開始上課時(shí)我們還不知如何求解的那個(gè)第(5)小題 的解集,還求出了 的解集,可見利用二次函數(shù)的圖像來解一元二次不等式是個(gè)十分有效的方法。

下面我們?cè)賹?duì)一般的一元二次不等式 與 來進(jìn)行討論。為簡便起見,暫只考慮 的情形。請(qǐng)同學(xué)們思考下列問題:

如果相應(yīng)的一元二次方程 分別有兩實(shí)根、惟一實(shí)根,無實(shí)根的話,其對(duì)應(yīng)的二次函數(shù) 的圖像與x軸的位置關(guān)系如何?(提問程度較好的學(xué)生)

【答】二次函數(shù) 的圖像開口向上且分別與x軸交于兩點(diǎn),一點(diǎn)及無交點(diǎn)。

現(xiàn)在請(qǐng)同學(xué)們觀察表中的二次函數(shù)圖,并寫出相應(yīng)一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)

【答】 的解集依次是

的解集依次是

它是我們今后求解一元二次不等式的主要工具。應(yīng)盡快將表中的結(jié)果記住。其關(guān)鍵就是抓住相應(yīng)二次函數(shù) 的圖像。

課本第19頁上的例1.例2.例3.它們均是求解二次項(xiàng)系數(shù) 的一元二次不等式,卻都沒有給出相應(yīng)二次函數(shù)的圖像。其解答過程雖很簡練,卻不太直觀?,F(xiàn)在我們?cè)谡n本預(yù)留的位置上分別給它們補(bǔ)上相應(yīng)二次函數(shù)圖像。

(教師巡視,重點(diǎn)關(guān)注程度稍差的同學(xué)。)

Ⅲ.演練反饋

1.解下列不等式:

(1) (2)

(3) (4)

2.若代數(shù)式 的值恒取非負(fù)實(shí)數(shù),則實(shí)數(shù)x的取值范圍是 。

3.解不等式

(1) (2)

參考答案:

1.(1) ;(2) ;(3) ;(4)R

2.

3.(1)

(2)當(dāng) 或 時(shí), ,當(dāng) 時(shí),

當(dāng) 或 時(shí), 。

Ⅳ.總結(jié)提煉

這節(jié)課我們學(xué)習(xí)了二次項(xiàng)系數(shù) 的一元二次不等式的解法,其關(guān)鍵是抓住相應(yīng)二次函數(shù)的圖像與x軸的交點(diǎn),再對(duì)照課本第39頁上表格中的結(jié)論給出所求一元二次不等式的解集。

(五)、課時(shí)作業(yè)

(P20.練習(xí)等3、4兩題)

(六)、板書設(shè)計(jì)

第二課時(shí)

Ⅰ.設(shè)置情境

(通過講評(píng)上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復(fù)習(xí)利用“三個(gè)二次”間的關(guān)系求解一元二次不等式的主要操作過程。)

上節(jié)課我們只討論了二次項(xiàng)系數(shù) 的一元二次不等式的求解問題??隙ㄓ型瑢W(xué)會(huì)問,那么二次項(xiàng)系數(shù) 的一元二次不等式如何來求解?咱們班上有誰能解答這個(gè)疑問呢?

Ⅱ.探索研究

(學(xué)生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項(xiàng)的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請(qǐng)持上述見解的學(xué)生代表進(jìn)一步說明各自的見解.)

生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項(xiàng)系數(shù) 的一元二次不等式的解集.

生乙:我覺得先在不等式兩邊同乘以-1將二次項(xiàng)系數(shù)變?yōu)檎龜?shù)后直接運(yùn)用上節(jié)課所學(xué)的方法求解就可以了.

師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學(xué)們則需再記住一張類似于第39頁上的表格中的各結(jié)論.這不但加重了記憶負(fù)擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯(cuò)誤.而按后一種見解來操作時(shí)則不存在這個(gè)問題,請(qǐng)同學(xué)們閱讀第19頁例4.

(待學(xué)生閱讀完畢,教師再簡要講解一遍.)

[知識(shí)運(yùn)用與解題研究]

由此例可知,對(duì)于二次項(xiàng)系數(shù)的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學(xué)過的方法。我們就能求

解任意一個(gè)一元二次不等式了,請(qǐng)同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)

(1) (2)

(分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評(píng)兩位同學(xué)的解答,注意糾正表述方面存在的問題.)

訓(xùn)練二 可化為一元一次不等式組來求解的不等式.

目前我們熟悉了利用“三個(gè)二次”間的關(guān)系求解一元二次不等式的方法雖然對(duì)任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點(diǎn)麻煩.故在求解形如 (或 )的一元二次不等式時(shí)則根據(jù)(有理數(shù))乘(除)運(yùn)算的“符號(hào)法則”化為同學(xué)們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式 求解的內(nèi)容并思考:原不等式的解集為什么是兩個(gè)一次不等式組解集的并集?(待學(xué)生閱讀完畢,請(qǐng)一程度較好,表達(dá)能力較強(qiáng)的學(xué)生回答該問題.)

【答】因?yàn)闈M足不等式組 或 的x都能使原不等式 成立,且反過來也是對(duì)的,故原不等式的解集是兩個(gè)一元二次不等式組解集的并集.

這個(gè)回答說明了原不等式的解集A與兩個(gè)一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請(qǐng)同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點(diǎn)關(guān)注程度較差的學(xué)生).

(1) [P20練習(xí)中第1大題]

(2) [P20練習(xí)中第1大題]

(3) [P20練習(xí)中第2大題]

(老師扼要講評(píng)三位同學(xué)的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).

例5 解不等式

因?yàn)?有理數(shù))積與商運(yùn)算的“符號(hào)法則”是一致的,故求解此類不等式時(shí),也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。

解:(略)

現(xiàn)在請(qǐng)同學(xué)們完成課本P21練習(xí)中第3、4兩大題。

(等學(xué)生完成后教師給出答案,如有學(xué)生對(duì)不上答案,由其本人追查原因,自行糾正。)

[訓(xùn)練三]用“符號(hào)法則”解不等式的復(fù)式訓(xùn)練。

(通過多媒體或其他載體給出下列各題)

1.不等式 與 的解集相同此說法對(duì)嗎?為什么[補(bǔ)充]

2.解下列不等式:

(1) [課本P22第8大題(2)小題]

(2)   [補(bǔ)充]

(3) [課本P43第4大題(1)小題]

(4) [課本P43第5大題(1)小題]

(5) [補(bǔ)充]

(每題均先由學(xué)生說出解題思路,教師扼要板書求解過程)

參考答案:

1.不對(duì)。同 時(shí)前者無意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為: ,即

解集為 。

(3)原不等式可化為

解集為

(4)原不等式可化為 或

解集為

(5)原不等式可化為: 或 解集為

Ⅲ.總結(jié)提煉

這節(jié)課我們重點(diǎn)講解了利用(有理數(shù))乘除法的符號(hào)法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對(duì)符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。

(五)布置作業(yè)

(P22.2(2)、(4);4;5;6。)

(六)板書設(shè)計(jì)

高一數(shù)學(xué)教案集合篇8

一、指導(dǎo)思想與理論依據(jù)

數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

二、教材分析

三、學(xué)情分析

本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

四、教學(xué)目標(biāo)

(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;

(2).能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡單的三角函數(shù)求值與化簡;

(3).創(chuàng)新素質(zhì)目標(biāo):通過對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;

五、教學(xué)重點(diǎn)和難點(diǎn)

1.教學(xué)重點(diǎn)

理解并掌握誘導(dǎo)公式.

2.教學(xué)難點(diǎn)

正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.

六、教法學(xué)法以及預(yù)期效果分析

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.

1.教法

數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.

2.學(xué)法

在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識(shí)及解決問題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).

3.預(yù)期效果

本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題.

高一數(shù)學(xué)教案集合篇9

學(xué)習(xí)目標(biāo)

1、掌握雙曲線的范圍、對(duì)稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)

2、掌握標(biāo)準(zhǔn)方程中的幾何意義

3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題

一、預(yù)習(xí)檢查

1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、

2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、

3、雙曲線的漸進(jìn)線方程為、

4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、

二、問題探究

探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

探究2、雙曲線與其漸近線具有怎樣的關(guān)系、

練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、

例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、

(1)過點(diǎn),離心率、

(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、

例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、

例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、

三、思維訓(xùn)練

1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是、

2、橢圓的離心率為,則雙曲線的離心率為、

3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、

4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則、

四、知識(shí)鞏固

1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是、

2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為、

3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為、

4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、

5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、

高一數(shù)學(xué)教案集合篇10

一、教學(xué)目標(biāo)

1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

2、過程與方法:學(xué)生通過觀察與模仿,建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。

3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。

二、教學(xué)重難點(diǎn)

重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

難點(diǎn):找對(duì)題目中的數(shù)量關(guān)系從而列出一元二次方程。

三、教學(xué)過程

(一)導(dǎo)入新課

師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個(gè)銅雕塑,有哪位同學(xué)能告訴我這是誰嗎?

生:老師,這是雷鋒叔叔。

師:對(duì),這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個(gè)雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?

生:是的老師。

師:可是原來紀(jì)念館的工作人員在建造這座雕像的時(shí)候曾經(jīng)遇到了一個(gè)問題,也就是圖片下面的這個(gè)問題,同學(xué)們想不想為他們解決這個(gè)問題呢?

生:想。

師:同學(xué)們也都很樂于助人,好那我們看一看這個(gè)問題是什么,然后帶著這個(gè)問題開始我們今天的學(xué)一元二次方程。

(二)新課教學(xué)

師:我們來看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用AC來表示上部,BC來表示下部先簡單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。

(下去巡視)

(三)小結(jié)作業(yè)

師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。

四、板書設(shè)計(jì)

五、教學(xué)反思

高一數(shù)學(xué)教案集合篇11

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩胈_解題,許多時(shí)候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

四、教學(xué)目標(biāo)

1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用__解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2.通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1.對(duì)圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線解題

高一數(shù)學(xué)教案集合篇12

一、學(xué)習(xí)目標(biāo)與自我評(píng)估

1 掌握利用單位圓的幾何方法作函數(shù) 的圖象

2 結(jié)合 的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3 會(huì)用代數(shù)方法求 等函數(shù)的周期

4 理解周期性的幾何意義

二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

“周期函數(shù)的概念”, 周期的求解。

三、學(xué)法指導(dǎo)

1、 是周期函數(shù)是指對(duì)定義域中所有 都有____,即 應(yīng)是恒等式。

2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動(dòng)與意義建構(gòu)

五、重點(diǎn)與難點(diǎn)探究

例1、若鐘擺的高度 與時(shí)間 之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求 時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1) (2)

總結(jié):(1)函數(shù) (其中 均為常數(shù),且___的周期T= 。

(2)函數(shù) (其中 均為常數(shù),且__的周期T= 。

例3、求證:____的周期為 __。

例4、(1)研究 和 函數(shù)的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數(shù),

總結(jié):函數(shù) (其中 均為常數(shù),且___的周期T= 。

例5、(1)求 的周期。

(2)已知 滿足 ,求證: 是周期函數(shù)

課后思考:能否利用單位圓作函數(shù) 的圖象。

六、作業(yè):

七、自主體驗(yàn)與運(yùn)用

1、函數(shù) 的周期為 ( )

A、 B、 C、 D、

2、函數(shù) 的最小正周期是 ( )

A、 B、 C、 D、

3、函數(shù) 的最小正周期是 ( )

A、 B、 C、 D、

4、函數(shù) 的周期是 ( )

A、 B、 C、 D、

5、設(shè) 是定義域?yàn)镽,最小正周期為 的函數(shù),

若 ,則 的值等于 (  )

A、1 B、 C、0 D、

6、函數(shù) 的最小正周期是 ,則

7、已知函數(shù) 的最小正周期不大于2,則正整數(shù)的最小值是

8、求函數(shù) 的最小正周期為T,且 ,則正整數(shù)的值是

9、已知函數(shù) 是周期為6的奇函數(shù),且 則

10、若函數(shù) ,則

11、用周期的定義分析 的周期。

12、已知函數(shù) ,如果使 的周期在 內(nèi),求正整數(shù) 的值

13、一機(jī)械振動(dòng)中,某質(zhì)子離開平衡位置的位移 與時(shí)間 之間的

函數(shù)關(guān)系如圖所示:

(1) 求該函數(shù)的周期;

(2) 求 時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。

14、已知 是定義在R上的函數(shù),且對(duì)任意 有

成立,

(1) 證明: 是周期函數(shù);

(2) 若 求 的值。

兩角差的余弦公式

【使用說明】

1、復(fù)習(xí)教材P124-P127頁,40分鐘時(shí)間完成預(yù)習(xí)學(xué)案

2、有余力的學(xué)生可在完成探究案中的部分內(nèi)容。

【學(xué)習(xí)目標(biāo)】

知識(shí)與技能:理解兩角差的余弦公式的推導(dǎo)過程及其結(jié)構(gòu)特征并能靈活運(yùn)用。

過程與方法:應(yīng)用已學(xué)知識(shí)和方法思考問題,分析問題,解決問題的能力。

情感態(tài)度價(jià)值觀: 通過公式推導(dǎo)引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】通過探索得到兩角差的余弦公式以及公式的靈活運(yùn)用

【難點(diǎn)】兩角差余弦公式的推導(dǎo)過程

預(yù)習(xí)自學(xué)案

一、知識(shí)鏈接

1. 寫出 的三角函數(shù)線 :

2. 向量 , 的數(shù)量積,

①定義:

②坐標(biāo)運(yùn)算法則:

3. , ,那么 是否等于 呢?

下面我們就探討兩角差的余弦公式

二、教材導(dǎo)讀

1.、兩角差的余弦公式的推導(dǎo)思路

如圖,建立單位圓O

(1)利用單位圓上的三角函數(shù)線

設(shè)

又OM=OB+BM

=OB+CP

=OA_____ +AP_____

=

從而得到兩角差的余弦公式:

____________________________________

(2)利用兩點(diǎn)間距離公式

如圖,角 的終邊與單位圓交于A( )

角 的終邊與單位圓交于B( )

角 的終邊與單位圓交于P( )

點(diǎn)T( )

AB與PT關(guān)系如何?

從而得到兩角差的余弦公式:

____________________________________

(3) 利用平面向量的知識(shí)

用 表示向量 ,

=( , ) =( , )

則 . =

設(shè) 與 的夾角為

①當(dāng) 時(shí):

=

從而得出

②當(dāng) 時(shí)顯然此時(shí) 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補(bǔ)角.我們?cè)O(shè)夾角為 ,則 + =

此時(shí) =

從而得出

2、兩角差的余弦公式

____________________________

三、預(yù)習(xí)檢測

1. 利用余弦公式計(jì)算 的值.

2. 怎樣求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值.

例2.已知 , 是第三象限角,求 的值.

訓(xùn)練案

一、 基礎(chǔ)訓(xùn)練題

1、

2、 ???????????

3、

二、綜合題

--------------------------------------------------

高一數(shù)學(xué)教案集合篇13

教學(xué)目標(biāo)

1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象.

(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

教學(xué)建議

教材分析

(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).

(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).教法建議

(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

高一數(shù)學(xué)教案集合篇14

經(jīng)典例題

已知關(guān)于的方程的實(shí)數(shù)解在區(qū)間,求的取值范圍。

反思提煉:1.常見的四種指數(shù)方程的一般解法

(1)方程的解法:

(2)方程的解法:

(3)方程的解法:

(4)方程的解法:

2.常見的三種對(duì)數(shù)方程的一般解法

(1)方程的解法:

(2)方程的解法:

(3)方程的解法:

3.方程與函數(shù)之間的轉(zhuǎn)化。

4.通過數(shù)形結(jié)合解決方程有無根的問題。

課后作業(yè):

1.對(duì)正整數(shù)n,設(shè)曲線在x=2處的切線與軸交點(diǎn)的縱坐標(biāo)為,則數(shù)列的前n項(xiàng)和的公式是

[答案]2n+1-2

[解析]∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

f′(2)=-n2n-1-2n=(-n-2)2n-1.

在點(diǎn)x=2處點(diǎn)的縱坐標(biāo)為=-2n.

∴切線方程為+2n=(-n-2)2n-1(x-2).

令x=0得,=(n+1)2n,

∴an=(n+1)2n,

∴數(shù)列ann+1的前n項(xiàng)和為2(2n-1)2-1=2n+1-2.

2.在平面直角坐標(biāo)系中,已知點(diǎn)P是函數(shù)的圖象上的動(dòng)點(diǎn),該圖象在P處的切線交軸于點(diǎn)M,過點(diǎn)P作的垂線交軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的縱坐標(biāo)為t,則t的最大值是_____________

解析:設(shè)則,過點(diǎn)P作的垂線

,所以,t在上單調(diào)增,在單調(diào)減,。

高一數(shù)學(xué)教案集合篇15

教學(xué)目標(biāo)

1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).

二、講解新課

請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

(板書)

1.的定義(板書)

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的.教師寫出的定義,標(biāo)注出重點(diǎn)詞語.

請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是,當(dāng) 時(shí),它只是等差數(shù)列,而不是.教師追問理由,引出對(duì)的認(rèn)識(shí):

2.對(duì)定義的認(rèn)識(shí)(板書)

(1)的首項(xiàng)不為0;

(2)的每一項(xiàng)都不為0,即 ;

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義.

是 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?

式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

3.的通項(xiàng)公式(板書)

問題:用 和 表示第 項(xiàng) .

①不完全歸納法

②疊乘法

,… , ,這 個(gè)式子相乘得 ,所以 .

(板書)(1)的通項(xiàng)公式

得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

(板書)(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已).

這里強(qiáng)調(diào)方程思想解決問題.方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

四、作業(yè) (略)

五、板書設(shè)計(jì)

1.等比數(shù)列的定義

2.對(duì)定義的認(rèn)識(shí)

3.等比數(shù)列的通項(xiàng)公式

(1)公式

(2)對(duì)公式的認(rèn)識(shí)

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個(gè)厚度超過了世界的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍?,比如紙?.001毫米,對(duì)折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是 粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

1548327