八年級上冊數(shù)學(xué)教案最新

新華0 分享 時間:

教案可以幫助教師更好地了解學(xué)生的情況,以便更好地指導(dǎo)學(xué)生學(xué)習(xí),并且更好地滿足學(xué)生的學(xué)習(xí)需求。小編給大家分享八年級上冊數(shù)學(xué)教案最新參考,方便大家參考八年級上冊數(shù)學(xué)教案最新怎么寫。

八年級上冊數(shù)學(xué)教案最新篇1

教學(xué)目標

1.掌握角的平分線的性質(zhì)定理和它的逆定理的內(nèi)容、證明及應(yīng)用.

2.理解原命題和逆命題的概念和關(guān)系,會找一個簡單命題的逆命題.

3.滲透角平分線是滿足特定條件的點的集合的思想。

教學(xué)重點和難點

角平分線的性質(zhì)定理和逆定理的應(yīng)用是重點.

性質(zhì)定理和判定定理的區(qū)別和靈活運用是難點.

教學(xué)過程設(shè)計

一、角平分錢的性質(zhì)定理與判定定理的探求與證明

1,復(fù)習(xí)引入課題.

(1)提問關(guān)于直角三角形全等的判定定理.

(2)讓學(xué)生用量角器畫出圖3-86中的∠AOB的角

平分線OC.

2.畫圖探索角平分線的性質(zhì)并證明之.

(1)在圖3-86中,讓學(xué)生在角平分線OC上任取一

點P,并分別作出表示P點到∠AOB兩邊的距離的線段

PD,PE.

(2)這兩個距離的大小之間有什么關(guān)系?為什么?學(xué)生度量后得出猜想,并用直角三角形全等的知識進行證明,得出定理.

(3)引導(dǎo)學(xué)生敘述角平分線的性質(zhì)定理(定理1),分析定理的條件、結(jié)論,并根據(jù)相應(yīng)圖形寫出表達式.

3.逆向思維探求角平分線的判定定理.

(1)讓學(xué)生將定理1的條件、結(jié)論進行交換,并思考所得命題是否成立?如何證明?請一位同學(xué)敘述證明過程,得出定理2——角平分線的判定定理.

(2)教師隨后強調(diào)定理1與定理2的區(qū)別:已知角平分線用性質(zhì)為定理1,由所給條件判定出角平分線是定理2.

(3)教師指出:直接使用兩個定理不用再證全等,可簡化解題過程.

4.理解角平分線是到角的兩邊距離都相等的點的集合.

(1)角平分線上任意一點(運動顯示)到角的兩邊的距離都相等(滲透集合的純粹性).

(2)在角的內(nèi)部,到角的兩邊距離相等的點(運動顯示)都在這個角的平分線上(而不在其它位置,滲透集合的完備性).

由此得出結(jié)論:角的平分線是到角的兩邊距離相等的所有點的集合.

二、應(yīng)用舉例、變式練習(xí)

練習(xí)1填空:如圖3-86(1)∵OC平分∠AOB,點P在射線OC上,PD⊥OA于D

PE⊥OB于E.∴---------(角平分線的性質(zhì)定理).

(2)∵PD⊥OA,PE⊥OB,----------∴OP平分∠AOB(-------------)

例1已知:如圖3-87(a),ABC的角平分線BD和CE交于F.

(l)求證:F到AB,BC和AC邊的距離相等;

(2)求證:AF平分∠BAC;

(3)求證:三角形中三條內(nèi)角的平分線交于一點,而且這點到三角形三邊的距離相等;

(4)怎樣找△ABC內(nèi)到三邊距離相等的點?

(5)若將“兩內(nèi)角平分線BD,CE交于F”改為“△ABC的兩個外角平分線BD,CE交于F,如圖3-87(b),那么(1)~(3)題的結(jié)論是否會改變?怎樣找△ABC外到三邊所在直線距離相等的點?共有多少個?

說明:

(1)通過此題達到鞏固角平分線的性質(zhì)定理(第(1)題)和判定定理(第(2)題)的目的.

(2)此題提供了證明“三線共點”的一種常用方法:先確定兩條直線交于某一點,再證明這點在第三條直線上。

(3)引導(dǎo)學(xué)生對題目的條件進行類比聯(lián)想(第(5)題),觀察結(jié)論如何變化,培養(yǎng)發(fā)散思維能力.

練習(xí)2已知△ABC,在△ABC內(nèi)求作一點P,使它到△ABC三邊的距離相等.

練習(xí)3已知:如圖3-88,在四邊形ABCD中,AB=AD,AB⊥BC,AD⊥DC.求證:點C在∠DAB的平分線上.

例2已知:如圖3-89,OE平分∠AOB,EC⊥OA于C,ED⊥OB于D.求證:(1)OC=OD;(2)OE垂直平分CD.

分析:證明第(1)題時,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分線的性質(zhì)定理得到OC=OD.這樣處理,可避免證明兩個三角形全等.

練習(xí)4課本第54頁的練習(xí).

說明:訓(xùn)練學(xué)生將生活語言翻譯成數(shù)學(xué)語言的能力.

三、互逆命題,互逆定理的定義及應(yīng)用

1.互逆命題、互逆定理的定義.

教師引導(dǎo)學(xué)生分析角平分線的性質(zhì),判定定理的題設(shè)、結(jié)論,使學(xué)生看到這兩個命題的題設(shè)和結(jié)論正好相反,得出互逆命題、互逆定理的定義,并舉出學(xué)過的互逆命題、互逆定理的例子.教師強調(diào)“互逆命題”是兩個命題之間的關(guān)系,其中任何一個做為原命題,那么另一個就是它的逆命題.

2.會找一個命題的逆命題,并判定它是真、假命題.

例3寫出下列命題的逆命題,并判斷(1)~(5)中原命題和它的逆命題是真命題還是假命題:

(1)兩直線平行,同位角相等;

(2)直角三角形的兩銳角互余;

(3)對頂角相等;

(4)全等三角形的對應(yīng)角相等;

(5)如果x=y(tǒng),那么x=y(tǒng);

(6)等腰三角形的兩個底角相等;

(7)直角三角形兩條直角邊的平方和等于斜邊的平方.

說明:注意逆命題語言的準確描述,例如第(6)題的逆命題不能說成是“兩底角相等的三角形是等腰三角形”.

3.理解互逆命題、互逆定理的有關(guān)結(jié)論.

例4判斷下列命題是否正確:

(1)錯誤的命題沒有逆命題;

(2)每個命題都有逆命題;

(3)一個真命題的逆命題一定是正確的;

(4)一個假命題的逆命題一定是錯誤的;

(5)每一個定理都一定有逆定理.

通過此題使學(xué)生理解互逆命題的真假性關(guān)系及互逆定理的定義.

四、師生共同小結(jié)

1.角平分線的性質(zhì)定理與判定定理的條件內(nèi)容分別是什么?

2.三角形的角平分線有什么性質(zhì)?怎樣找三角形內(nèi)到三角形三邊距離相等的點?

3.怎樣找一個命題的逆命題?原命題與逆命題是否同真、同假?

五、作業(yè)

課本第55頁第3,5,6,7,8,9題.

課堂教學(xué)設(shè)計說明

本教學(xué)設(shè)計需2課時完成.

角平分線是符合某種條件的動點的集合,因此,利用教具,投影或計算機演示動點運動的過程和規(guī)律,更能展示知識的形成過程,有利于學(xué)生自己觀察,探索新知識,從中提高興趣,以充分培養(yǎng)能力,發(fā)揮學(xué)生學(xué)習(xí)的主動性.

八年級上冊數(shù)學(xué)教案最新篇2

一、函數(shù)及其相關(guān)概念

1、變量與常量

在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

2、函數(shù)解析式

用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數(shù)的三種表示法及其優(yōu)缺點

(1)解析法

兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。

(2)列表法

把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

(3)圖像法:用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

4、由函數(shù)解析式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

(2)描點:以表中每對對應(yīng)值為坐標,在坐標平面內(nèi)描出相應(yīng)的點

(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接

二、正比例函數(shù)和一次函數(shù)

1、正比例函數(shù)和一次函數(shù)的概念

一般地,如果

2、一次函數(shù)的圖像

所有一次函數(shù)的圖像都是一條直線。

3、一次函數(shù)、正比例函數(shù)圖像的主要特征:

一次函數(shù)y=kx+b的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)y=kx的圖像是經(jīng)過原點(0,0)的直線。(如下圖)

4.正比例函數(shù)的性質(zhì)

一般地,正比例函數(shù)y=kx有下列性質(zhì):

(1)當k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;

(2)當k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。

5、一次函數(shù)的性質(zhì)

一般地,一次函數(shù)y=kx+b有下列性質(zhì):

(1)當k>0時,y隨x的增大而增大

(2)當k<0時,y隨x的增大而減小

6、正比例函數(shù)和一次函數(shù)解析式的確定

確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k≠0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k≠0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。

圖像分析:

k>0,b>0,圖像經(jīng)過一、二、三象限,y隨x的增大而增大。

k>0,b<0,圖像經(jīng)過一、三、四象限,y隨x的增大而增大。

k<0,b>0,圖像經(jīng)過一、二、四象限,y隨x的增大而減小

k<0,b<0,圖像經(jīng)過二、三、四象限,y隨x的增大而減小。

注:當b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。

八年級上冊數(shù)學(xué)教案最新篇3

教學(xué)目標:

1、經(jīng)歷探索簡單圖形軸對稱性的過程,進一步體會軸對稱的特征,發(fā)展空間觀念

2、探索并了解角的平分線、線段垂直平分線的有關(guān)性質(zhì).

教學(xué)重點:

1、角、線段是軸對稱圖形

2、角的平分線、線段垂直平分線的有關(guān)性質(zhì)

教學(xué)難點:

角的平分線、線段垂直平分線的有關(guān)性質(zhì)

準備活動:

準備一個三角形、一張畫好一條線段的紙張

教學(xué)過程:

先復(fù)習(xí)軸對稱圖形的知識,提問:角是不是軸對稱圖形呢?如果是,它的對稱軸在哪里?引起學(xué)生思考并通過動手操作,尋找答案.

一、探索活動

教師示范:(按以下步驟折紙)

1、在準備好的三角形的每個頂點上標好字母;A、B、C.把角A對折,使得這個角的兩邊重合.

2、在折痕(即平分線)上任意找一點C,

3、過點C折OA邊的垂線,得到新的折痕CD,其中,點D是折痕與OA的交點,即垂足.

4、將紙打開,新的折痕與OB邊交點為E.

教師要引導(dǎo)學(xué)生思考:我們現(xiàn)在觀察到的只是角的一部分.注意角的概念.

學(xué)生通過思考應(yīng)該大部分都能明白角是軸對稱圖形這個結(jié)論.

問題2:在上述的操作過程中,你發(fā)現(xiàn)了哪些相等的線段?說明你的理由,在角平分線上在另找一點試一試.是否也有同樣的發(fā)現(xiàn)?

學(xué)生應(yīng)該很快就找到相等的線段.

下面用我們學(xué)過的知識證明發(fā)現(xiàn):

如圖,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求證:OE=OD.

鞏固練習(xí):在Rt△ABC中,BD是角平分線,DE⊥AB,垂足為E,DE與DC相等嗎?為什么?

(1)如圖,OC是∠AOB的平分線,點P在OC上,PO⊥OA,PE⊥OB,垂足分別是D、E,PD=4cm,則PE=__________cm.

(2)如圖,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,點D到AB的距離為5cm,則CD=_____cm.

內(nèi)容二:線段是軸對稱圖形嗎?

做一做:按下面步驟做:

1、用準備的線段AB,對折AB,使得點A、B重合,折痕與AB的交點為O.

2、在折痕上任取一點C,沿CA將紙折疊;

3、把紙展開,得到折痕CA和CB.

觀察自己手中的圖形,回答下列問題:

(1)CO與AB有什么樣的位置關(guān)系?

(2)AO與OB相等嗎?CA與CB呢?能說明你的理由嗎?

在折痕上另取一點,再試一試,你又有什么發(fā)現(xiàn)?

學(xué)生會得到下面的結(jié)論:

(1)線段是軸對稱圖形.

(2)它的對稱軸垂直于這條線段并且平分它.

(3)對稱軸上的點到這條線段的距離相等.

應(yīng)用:

(1)如圖,AB是△ABC的一條邊,,DE是AB的垂直平分線,垂足為E,并交BC于點D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.

(2)如圖,在△ABC中,AB=AC=16cm,AB的垂直平分線交AC于D,如果BC=10cm,那么△BCD的周長是_______cm.

小結(jié):

(1)角是軸對稱圖形.

(2)角平分線上的點到這個角的兩邊的距離相等.

(3)線段是軸對稱圖形.

(4)垂直并且平分線段的直線叫做這條線段的垂直平分線.簡稱中垂線.

(5)線段垂直平分線上的點到這條線段的兩個端點距離相等.

作業(yè):課本P193習(xí)題7.2:1、2、3.

教學(xué)后記:

學(xué)生對這節(jié)課的內(nèi)容比較難掌握,特別是對于“角平分線上的點到這個角的兩邊距離相等”這個性質(zhì),一時難于理解.的部分原因是學(xué)生忘記了點但直線的距離是什么一回事.而對于中垂線的理解較好.基本上能找到當中相等的線段,并且用學(xué)過的知識予以證明.內(nèi)容較多,容量較大.課后還要加強理解和練習(xí).

八年級上冊數(shù)學(xué)教案最新篇4

一、教學(xué)目標

1.了解分式、有理式的概念.

2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

二、重點、難點

1.重點:理解分式有意義的條件.

2.難點:能熟練地求出分式有意義的條件.

三、課堂引入

1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.

2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30/h,它沿江以最大航速順流航行90所用時間,與以最大航速逆流航行60所用時間相等,江水的流速為多少?

請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.

設(shè)江水的流速為v/h.

輪船順流航行90所用的時間為小時,逆流航行60所用時間小時,所以=.

3.以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?

四、例題講解

P128例1.當下列分式中的字母為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母的取值范圍.

[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.

(補充)例2.當為何值時,分式的值為0?

(1)(2)(3)

[分析]分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.

[答案](1)=0(2)=2(3)=1

五、隨堂練習(xí)

1.判斷下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.當x取何值時,下列分式有意義?

(1)(2)(3)

3.當x為何值時,分式的值為0?

(1)(2)(3)

六、課后練習(xí)

1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件個,做80個零件需小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是千米/時,輪船的逆流速度是千米/時.

(3)x與的差于4的商是.

2.當x取何值時,分式無意義?

3.當x為何值時,分式的值為0?

八年級上冊數(shù)學(xué)教案最新篇5

一、教學(xué)目標:理解分式乘除法的法則,會進行分式乘除運算.

二、重點、難點

1.重點:會用分式乘除的法則進行運算.

2.難點:靈活運用分式乘除的法則進行運算 .

3. 難點與突破方法

分式的運算以有理數(shù)和整式的運算為基礎(chǔ),以因式分解為手段,經(jīng)過轉(zhuǎn)化后往經(jīng)過轉(zhuǎn)化后往往可視為整式的運算.分式的乘除的法則和運算順序可類比分數(shù)的有關(guān)內(nèi)容得到.所以,教給學(xué)生類比的數(shù)學(xué)思想方法能較好地實現(xiàn)新知識的轉(zhuǎn)化.只要做到這一點就可充分發(fā)揮學(xué)生的主體性,使學(xué)生主動獲取知識.教師要重點處理分式中有別于分數(shù)運算的有關(guān)內(nèi)容,使學(xué)生規(guī)范掌握,特別是運算符號的問題,要抓住出現(xiàn)的問題認真落實.

三、例、習(xí)題的意圖分析

1.P13本節(jié)的引入還是用問題1求容積的高,問題2求大拖拉機的工作效率是小拖拉機的工作效率的多少倍,這兩個引例所得到的容積的高是 ,大拖拉機的工作效率是小拖拉機的工作效率的 倍.引出了分式的乘除法的實際存在的意義,進一步引出P14[觀察]從分數(shù)的乘除法引導(dǎo)學(xué)生類比出分式的乘除法的法則.但分析題意、列式子時,不易耽誤太多時間.

2.P14例1應(yīng)用分式的乘除法法則進行計算,注意計算的結(jié)果如能約分,應(yīng)化簡到最簡.

3.P14例2是較復(fù)雜的分式乘除,分式的分子、分母是多項式,應(yīng)先把多項式分解因式,再進行約分.

4.P14例3是應(yīng)用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據(jù)問題的實際意義可知a>1,因此(a-1)2=a2-2a+1四、課堂引入

1.出示P13本節(jié)的引入的問題1求容積的高 ,問題2求大拖拉機的工作效率是小拖拉機的工作效率的 倍.

[引入]從上面的問題可知,有時需要分式運算的乘除.本節(jié)我們就討論數(shù)量關(guān)系需要進行分式的乘除運算.我們先從分數(shù)的乘除入手,類比出分式的乘除法法則.

1. P14[觀察] 從上面的算式可以看到分式的乘除法法則.

3.[提問] P14[思考]類比分數(shù)的乘除法法則,你能說出分式的乘除法法則?

類似分數(shù)的乘除法法則得到分式的乘除法法則的結(jié)論.

五、例題講解

P14例1.

[分析]這道例題就是直接應(yīng)用分式的乘除法法則進行運算.應(yīng)該注意的是運算結(jié)果應(yīng)約分到最簡,還應(yīng)注意在計算時跟整式運算一樣,先判斷運算符號,在計算結(jié)果.

P15例2.

[分析] 這道例題的分式的分子、分母是多項式,應(yīng)先把多項式分解因式,再進行約分.結(jié)果的分母如果不是單一的多項式,而是多個多項式相乘是不必把它們展開.

P15例.

[分析]這道應(yīng)用題有兩問,第一問是:哪一種小麥的單位面積產(chǎn)量?先分別求出“豐收1號”、“豐收2號”小麥試驗田的面積,再分別求出“豐收1號”、“豐收2號”小麥試驗田的單位面積產(chǎn)量,分別是 、 ,還要判斷出以上兩個分式的值,哪一個值更大.要根據(jù)問題的實際意義可知a>1,因此(a-1)2=a2-2a+1六、隨堂練習(xí)

計算

(1) (2) (3)

(4)-8xy (5) (6)

七、課后練習(xí)

計算

(1) (2) (3)

(4) (5) (6)

八、答案:

六、(1)ab (2) (3) (4)-20x2 (5)

(6)

七、(1) (2) (3) (4)

(5) (6)

八年級上冊數(shù)學(xué)教案最新篇6

教學(xué)目標:

1、本節(jié)課使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根。

2、使學(xué)生掌握運用去分母或換元的方法解可化為一元二次方程的分式方程;使學(xué)生理解轉(zhuǎn)化的數(shù)學(xué)基本思想;

3、使學(xué)生能夠利用最簡公分母進行驗根。

教學(xué)重點:

可化為一元二次方程的分式方程的解法。

教學(xué)難點:

教學(xué)難點:解分式方程,學(xué)生不容易理解為什么必須進行檢驗。

教學(xué)過程:

在初二我們已經(jīng)學(xué)過分式方程的概念及可化為一元一次方程的分式方程的解法,知道了解可化為一元一次方程的分式方程的解題步驟以及驗根的目的,了解了轉(zhuǎn)化的思想方法的基本運用.今天,我們將在此基礎(chǔ)上,來學(xué)習(xí)可化為一元二次方程的分式方程的解法.“12.7節(jié)”是在學(xué)生已經(jīng)掌握的同類型的方程的解法,直接點出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相類同,及產(chǎn)生增根的原因,以激發(fā)學(xué)生歸納總結(jié)的欲望,使學(xué)生理解類比方法在數(shù)學(xué)解題中的重要性,使學(xué)生進一步加深對“轉(zhuǎn)化”這一基本數(shù)學(xué)思想的理解,抓住學(xué)生的注意力,同時可以激起學(xué)生探索知識的欲望。

為了使學(xué)生能進一步加深對“類比”、“轉(zhuǎn)化”的理解,可以通過回憶復(fù)習(xí)可化為一元一次方程的分式方程的解法,探求解可化為一元二次方程的分式方程的解法,同時通過對產(chǎn)生增根的分析,來達到學(xué)生對“類比”的方法及“轉(zhuǎn)化”的基本數(shù)學(xué)思想在數(shù)學(xué)學(xué)習(xí)中的重要性的理解,從而調(diào)動學(xué)生能積極主動地參與到教學(xué)活動中去。

一、新課引入:

1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?

2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?

3、產(chǎn)生增根的原因是什么?.

二、新課講解:

通過新課引入,可直接點出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程及其解法,類比地提出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相同。

點出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識完全類同后,讓全體學(xué)生對照前面復(fù)習(xí)過的分式方程的解,來進一步加深對“類比”法的理解,以便學(xué)生全面地參與到教學(xué)活動中去,全面提高教學(xué)質(zhì)量。

在前面的基礎(chǔ)上,為了加深學(xué)生對新知識的理解,與學(xué)生共同分析解決例題,以提高學(xué)生分析問題和解決問題的能力。

八年級上冊數(shù)學(xué)教案最新篇7

教材分析

1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習(xí)態(tài)度和方法。

學(xué)情分析

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

教學(xué)目標

(一)教學(xué)目標:

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學(xué)重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導(dǎo)完全平方公式

教學(xué)過程

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、一現(xiàn)身手

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

板書設(shè)計

完全平方公式

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

八年級上冊數(shù)學(xué)教案最新篇8

重點與難點分析:

本節(jié)內(nèi)容的重點是及其推論。等腰三角形兩底角相等(等邊對等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高。中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時注意靈活運用。

本節(jié)內(nèi)容的難點是文字題的證明。對文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知。求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。

教法建議:

數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”。根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過精心設(shè)置的一個個問題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問題。解決問題。為了充分調(diào)動學(xué)生的積極性,使學(xué)生變被動學(xué)習(xí)為主動學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問題教學(xué)法。具體說明如下:

(1)發(fā)現(xiàn)問題

本節(jié)課開始,先投影顯示圖形及問題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問題讓學(xué)生思考,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求。

(2)解決問題

對所得到的結(jié)論通過教師啟發(fā),讓學(xué)生完成證明。指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個定理及其兩個推論。多讓學(xué)生親自實踐,參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程,這是課堂教學(xué)的基本思想和教學(xué)理念。

(3)加深理解

學(xué)生學(xué)習(xí)的過程是對知識的消化和理解的過程,通過例題的解決,提高和完善對定理及其推論理解。這一過程采用講練結(jié)合。適時點撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問題身上,讓學(xué)生的思維活動在老師的引導(dǎo)下層層展開,讓中國學(xué)習(xí)聯(lián)盟膽參與課堂教學(xué),使他們“聽”有所“思”?!熬殹庇兴矮@”,使傳授知識與培養(yǎng)能力融為一體。一。教學(xué)目標:

1、掌握定理的證明及這個定理的兩個推論;

2、會運用證明線段相等;

3、使學(xué)生掌握一般文字題的證明;

4、通過文字題的證明,提高學(xué)生幾何三種語言的互譯能力;

5、逐步培養(yǎng)學(xué)生邏輯思維能力及分析實際問題解決問題的能力;

6、滲透對稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點;

教學(xué)重點:

及其推論

教學(xué)難點:

文字題的證明

教學(xué)用具:

直尺,微機

教學(xué)方法:

問題探究法

教學(xué)過程:

1、性質(zhì)定理的發(fā)現(xiàn)與證明

(1)投影顯示:

一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個底角相等(若有其它發(fā)現(xiàn)也要給予肯定),

(2)提醒學(xué)生:憑觀察作出的判斷準確嗎?怎樣證明你的判斷?

師生討論后,確定用全等三角形證明,學(xué)生親自動手作出證明。證明略。

教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等。

2、推論1的發(fā)現(xiàn)與證明

投影顯示:

由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊。

啟發(fā)學(xué)生自己歸納得出:頂角平分線。底邊上的中線。底邊上的高互相重合。

學(xué)生口述證明過程。

教師指出:等腰三角形的頂角的平分線,底邊上的中線。底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。

3、推論2的發(fā)現(xiàn)與證明

投影顯示:

一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個內(nèi)角都為。然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”。

4、定理及其推論的應(yīng)用

小結(jié):滲透分類思想,培養(yǎng)思維的嚴密性。

例2。已知:如圖,點D。E在△ABC的邊BC上,AB=AC,AD=AE

求證:BD=CE

證明:作AF⊥BC,,垂足為F,則AF⊥DE

∵AB=AC,AD=AE(已知)

AF⊥BC,AF⊥DE(輔助線作法)

∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)

∴BD=CE

強調(diào)說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時,有時作頂角的平分線,有時作底邊中線,有時作底邊的高,有時作哪條線都可以,有時卻不能,還要根據(jù)實際情況來定。

例3、已知:如圖,D是等邊△ABC內(nèi)一點,DB=DA,BP=AB,DBP=DBC

求證:P=

證明:連結(jié)OC

在△BPD和△BCD中

在△ADC和△BCD中

因此,P=

例4求證:等腰三角形兩腰上中線的交點到底邊兩端點的距離相等

已知:如圖,AB=AC,BD。CE分別為AC邊。AB邊的中線,它們相交于F點

求證:BF=CF

證明:∵BD。CE是△ABC的兩條中線,AB=AC

∴AD=AE,BE=CD

在△ABD和△ACE中

∴△ABD≌△ACE

∴1=2

在△BEF和△CED中

∴△BEF≌△CED

∴BF=FC

設(shè)想:例1到例4,由易到難地安排學(xué)生對新授內(nèi)容的練習(xí)和鞏固。在以上教學(xué)中,特別注意“一般解題方法”的運用。

在四個例題的教學(xué)中,充分發(fā)揮學(xué)生與學(xué)生之間的互補性,從而提高認識,完善認知結(jié)構(gòu),使課堂成為學(xué)生發(fā)揮想象力和創(chuàng)造性的“學(xué)堂”

5、反饋練習(xí):

出示圖形及題目:

將實際問題數(shù)學(xué)化,培養(yǎng)學(xué)生應(yīng)用能力。

6、課堂小結(jié):

教師引導(dǎo)學(xué)生小結(jié)

(1)

(2)等邊三角形的性質(zhì)

(3)文字證明題的書寫步驟

7、布置作業(yè):

a、書面作業(yè)P961.2

b、上交作業(yè)P964.7.8

c、思考題:

已知:如圖:在△ABC中,AB=AC,E在CA的延長線上,∠AEF=∠AFE。

求證:EF⊥BC

證明:作BC邊上的高AM,M為垂足

∵AM⊥BC

∴∠BAM=∠CAM

又∵∠BAC為△AEF的外角

∴∠BAC=∠E+∠EFA

即∠BAM+∠CAM=∠E=∠EFA

∵∠AEF=∠AFE

∴∠CAM=∠E

∴EF∥AM

∵AM⊥BC

∴EF⊥BC

七、板書設(shè)計:

(略)

八年級上冊數(shù)學(xué)教案最新篇9

初二上冊數(shù)學(xué)知識點總結(jié):等腰三角形

一、等腰三角形的性質(zhì):

1、等腰三角形兩腰相等.

2、等腰三角形兩底角相等(等邊對等角)。

3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

5、等邊三角形的性質(zhì):

①等邊三角形三邊都相等.

②等邊三角形三個內(nèi)角都相等,都等于60°

③等邊三角形每條邊上都存在三線合一.

④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).

6.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的.三角形是等腰三角形.

②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形.

②三個角都相等的三角形是等邊三角形.

③有一個角是60°的等腰三角形是等邊三角形.

八年級上冊數(shù)學(xué)教案最新篇10

一、教學(xué)目標

(一)知識與技能

了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

(二)過程與方法

通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。

(三)情感、態(tài)度與價值觀

在數(shù)與形結(jié)合的過程中,體會數(shù)學(xué)學(xué)習(xí)的樂趣。

二、教學(xué)重難點

(一)教學(xué)重點

數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。

(二)教學(xué)難點

數(shù)形結(jié)合的思想方法。

三、教學(xué)過程

(一)引入新課

提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。

(二)探索新知

學(xué)生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系:

提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

學(xué)生活動:畫圖表示后提問。

提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

提問3:你是如何理解數(shù)軸三要素的?

師生共同總結(jié):“原點”是數(shù)軸的“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

(三)課堂練習(xí)

如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

(四)小結(jié)作業(yè)

提問:今天有什么收獲?

引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

八年級上冊數(shù)學(xué)教案最新篇11

教學(xué)目標

1、知識與技能

能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實生活中的問題,會建構(gòu)函數(shù)“模型”。

2、過程與方法

經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維。

3、情感、態(tài)度與價值觀

培養(yǎng)變量與對應(yīng)的思想,形成良好的&39;函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值。

重、難點與關(guān)鍵

1、重點:一次函數(shù)的應(yīng)用。

2、難點:一次函數(shù)的應(yīng)用。

3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維。

教學(xué)方法

采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用。

教學(xué)過程

一、范例點擊,應(yīng)用所學(xué)

例5、小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象。

例6、A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的費用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運總運費最少?

解:設(shè)總運費為y元,A城往運C鄉(xiāng)的肥料量為x噸,則運往D鄉(xiāng)的肥料量為(200—x)噸。B城運往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關(guān)系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉(xiāng)0噸,運往D鄉(xiāng)200噸;從B城運往C鄉(xiāng)240噸,運往D鄉(xiāng)60噸,此時總運費最少,總運費最小值為10040元。

拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運?

二、隨堂練習(xí),鞏固深化

課本P119練習(xí)。

三、課堂總結(jié),發(fā)展?jié)撃?/p>

由學(xué)生自我評價本節(jié)課的表現(xiàn)。

四、布置作業(yè),專題突破

課本P120習(xí)題14.2第9,10,11題。

八年級上冊數(shù)學(xué)教案最新篇12

一、創(chuàng)設(shè)情境

在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.

問題1如圖是某地一天內(nèi)的氣溫變化圖.

看圖回答:

(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

(2)這一天中,最高氣溫是多少?最低氣溫是多少?

(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?

二、探究歸納

問題2銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20__年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

觀察上表,說說隨著存期x的增長,相應(yīng)的年利率y是如何變化的.

解隨著存期x的增長,相應(yīng)的年利率y也隨著增長.

問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應(yīng)的數(shù)值:

觀察上表回答:

(1)波長l和頻率f數(shù)值之間有什么關(guān)系?

(2)波長l越大,頻率f就________.

解(1)l與f的乘積是一個定值,即

lf=300000,

或者說.

(2)波長l越大,頻率f就越?。?/p>

問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

利用這個關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

由此可以看出,圓的半徑越大,它的面積就_________.

解S=πr2.

圓的半徑越大,它的面積就越大.

在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關(guān).一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級上冊數(shù)學(xué)教案最新篇13

【教學(xué)目標】

1、了解因式分解的概念和意義;

2、認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

【教學(xué)重點、難點】

重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。

【教學(xué)過程】

㈠、情境導(dǎo)入

看誰算得快:(搶答)

(1)若a=101,b=99,則a2-b2=___________;

(2)若a=99,b=-1,則a2-2ab+b2=____________;

(3)若x=-3,則20x2+60x=____________。

㈡、探究新知

1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)

板書課題:§6.1因式分解

因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

㈢、前進一步

1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

2、因式分解與整式乘法的關(guān)系:

因式分解

結(jié)合:a2-b2(a+b)(a-b)

整式乘法

說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

㈣、鞏固新知

1、下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。

㈤、應(yīng)用解釋

例檢驗下列因式分解是否正確:

(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

練習(xí)計算下列各題,并說明你的算法:(請學(xué)生板演)

(1)872+87×13

(2)1012-992

㈥、思維拓展

1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=

2.機動題:(填空)x2-8x+m=(x-4)(),且m=

㈦、課堂回顧

今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。

㈧、布置作業(yè)

作業(yè)本(1),一課一練

八年級上冊數(shù)學(xué)教案最新篇14

一、教學(xué)分析

1、教學(xué)內(nèi)容分析

本節(jié)課是新人教版教材《數(shù)學(xué)》八年級上冊第11.3節(jié)第一課時內(nèi)容,是在七年級學(xué)習(xí)了角平分線的概念和前面剛學(xué)完證明直角三角形全等的基礎(chǔ)上進行教學(xué)的內(nèi)容包括角平分線的作法。角平分線的性質(zhì)及初步應(yīng)用。作角的平分線是基本作圖,角平分線的性質(zhì)為證明線段或角相等開辟了新的途徑,體現(xiàn)了數(shù)學(xué)的簡潔美,同時也是全等三角形知識的延續(xù),又為后面角平分線的判定定理的學(xué)習(xí)奠定了基礎(chǔ)。因此,本節(jié)內(nèi)容在數(shù)學(xué)知識體系中起到了承上啟下的作用。同時教材的安排由淺入深。由易到難。知識結(jié)構(gòu)合理,符合學(xué)生的心理特點和認知規(guī)律。

2、教學(xué)對象分析

剛進入初二的學(xué)生觀察。操作。猜想能力較強,但歸納。運用數(shù)學(xué)意識的思想比較薄弱,思維的廣闊性。敏捷性。靈活性比較欠缺,需要在課堂教學(xué)中進一步加強引導(dǎo)。根據(jù)學(xué)生的認知特點和接受水平,我把第一課時的教學(xué)任務(wù)定為:掌握角平分線的畫法及會用角平分線的性質(zhì)定理解題,同時為下節(jié)判定定理的學(xué)習(xí)打好基礎(chǔ)。

二、教學(xué)目標

1、知識與技能:

(1)掌握用尺規(guī)作已知角的平分線的方法。

(2)理解角的平分線的性質(zhì)并能初步運用。

2、數(shù)學(xué)思考:通過讓學(xué)生經(jīng)歷觀察演示,動手操作,合作交流,自主探究等過程,培養(yǎng)學(xué)生用數(shù)學(xué)知識解決問題的能力。

3、解決問題:

(1)初步了解角的平分線的性質(zhì)在生產(chǎn)。生活中的應(yīng)用。

(2)培養(yǎng)學(xué)生的數(shù)學(xué)建模能力。

4、情感與態(tài)度:充分利用多媒體教學(xué)優(yōu)勢,培養(yǎng)學(xué)生探究問題的興趣,增強解決問題的信心,獲得解決問題的成功體驗,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的熱情。

三、教學(xué)重點。難點

重點:掌握角平分線的尺規(guī)作圖,理解角的平分線的性質(zhì)并能初步運用。

難點:

(1)對角平分線性質(zhì)定理中點到角兩邊的距離的正確理解;

(2)對于性質(zhì)定理的運用(學(xué)生習(xí)慣找三角形全等的方法解決問題而不注重利用剛學(xué)過的定理來解決,結(jié)果相當于對定理的重復(fù)證明)

四、教學(xué)過程

教學(xué)環(huán)節(jié)設(shè)計

1、提出問題,思考探究

問題1:

生活中有很多數(shù)學(xué)問題:

小明家居住在某小區(qū)一棟居民樓的一樓,剛好位于一條暖氣和天然氣管道所成角的平分線上的P點,要從P點建兩條管道,分別與暖氣管道和天然氣管道相連。

(1)怎樣修建管道最短?

(2)新修的兩條管道長度有什么關(guān)系,畫來看一看。

[設(shè)計意圖]

依據(jù)新課程理念,教師要創(chuàng)造性地使用教材,作為本課的第一個引例,從學(xué)生的生活出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生運用數(shù)學(xué)知識,解決實際問題的意識,復(fù)習(xí)了點到直線的距離這一概念,為后續(xù)的學(xué)習(xí)作好知識上的儲備。

問題2:

要研究角的平分線的性質(zhì)我們必須會畫角的平分線,工人師傅常用簡易平分角的儀器來畫角的平分線。出示儀器模型,介紹儀器特點(有兩對邊相等),將A點放在角的頂點處,AB和AD沿角的兩邊放下,過AC畫一條射線AE,AE即為∠BAD的平分線。為什么?

[設(shè)計意圖]

體驗從生產(chǎn)生活中分離,抽象出數(shù)學(xué)模型,并主動運用所學(xué)知識來解決問題。從上面的探究中可以得到作已知角的平分線的方法。

問題3:

把簡易平分角的儀器放在角的兩邊時,平分角的儀器兩邊相等,從幾何作圖角度怎么畫?BC=DC,從幾何作圖角度怎么畫?

[設(shè)計意圖]

從實驗操作中獲得啟示,明確幾何作圖的基本思路和方法。

問題4:

作一個平角∠AOB的平分線OC,反向延長OC得到直線CD,請學(xué)生說出直線CD與AB的位置關(guān)系。并在此基礎(chǔ)上再作出一個45度的角。

[設(shè)計意圖]

通過作特殊角的平分線,讓學(xué)生掌握過直線上一點作已知直線的垂線及特殊角的方法,達到培養(yǎng)學(xué)生的發(fā)散思維的目的

問題5:

讓學(xué)生用紙剪一個角,把紙片對折,使角的兩邊疊合在一起,把對折后的紙片繼續(xù)折一次,折出一個直三角形(使第一次的折痕為斜邊),然后展開,觀察兩次折疊形成的三條折痕。

(1)第一次的折痕和角有什么關(guān)系?為什么?

(2)第二次折疊形成的兩條折痕與角的兩邊有何關(guān)系,它們的長度有何關(guān)系?

[設(shè)計意圖]

培養(yǎng)學(xué)生的動手操作能力和觀察能力,為下面進一步揭示角平分線的性質(zhì)作好鋪墊。

2、教師點撥,歸納概括

按照折紙的順序畫出角及折紙形成的三條折痕。讓學(xué)生分組討論。交流,再利用幾何畫板軟件驗證結(jié)論,并用文字語言闡述得到的性質(zhì)。(角的平分線上的點到角兩邊的距離相等)結(jié)合圖形寫出已知,求證,分析后寫出證明過程。教師歸納,強調(diào)定理的條件和作用。

教師用文字語言敘述得到的結(jié)論。引導(dǎo)學(xué)生結(jié)合圖形寫出已知。求證,分析后寫出證明過程,并利用實物投影展示。證明后,教師強調(diào)經(jīng)過證明正確的命題可作為定理。同時強調(diào)文字命題的證明步驟。

[設(shè)計意圖]

經(jīng)歷實踐→猜想→證明→歸納的過程,符合學(xué)生的認知規(guī)律,尤其是對于結(jié)論的驗證,信息技術(shù)在此體現(xiàn)其不可替代性,從而把學(xué)生的直觀體驗上升到理性思維。

3、例題解析、應(yīng)用新知

例1在△ABC中,AD是它的角平分線,且BD=CD,DE⊥AB,

DF⊥AC,垂足分別是E,F(xiàn)。

求證:EB=FC。

[設(shè)計意圖]

為突出本節(jié)課重點。突破難點而設(shè)計的一項活動。讓學(xué)生運用性質(zhì)解決數(shù)學(xué)問題,通過利用多媒體對一些邊進行變色,提醒學(xué)生直接運用定理,不要仍舊去找全等三角形。同時通過信息技術(shù)方便進行一題多解及一題多變研究,更好的拓展學(xué)生解題思路及形成知識運用能力。兩道變題同時展示,符合高效課堂要求。通過學(xué)生觀察識圖。獨立思考。小組討論,培養(yǎng)學(xué)生合作交流的意識。

例2已知:△ABC的角平分線BM。CN相交于點P。

求證:點P到三邊AB。BC。CA的距離相等。

[教學(xué)方法手段]

限時讓學(xué)生獨立思考分析,然后交流證題思路,再通過多媒體展示一般證明過程。

[設(shè)計意圖]

通過問題的解決,幫助學(xué)生更好的理解角平分線的性質(zhì),并達到能熟練運用的程度。

4、課堂練習(xí),鞏固提高

課后練習(xí)1、2題。

[設(shè)計意圖]

通過練習(xí),鞏固角平分線的性質(zhì)。

5、課堂小結(jié),回顧反思

(1)。這節(jié)課你有哪些收獲,還有什么困惑?

(2)。通過本節(jié)課你了解了哪些思考問題的方法?

[設(shè)計意圖]

通過引導(dǎo)學(xué)生自主歸納,調(diào)動學(xué)生的主動參與意識,鍛煉學(xué)生歸納概括與表達能力。

6、布置作業(yè),信息反饋

[設(shè)計意圖]

通過課后動手練習(xí)作業(yè),教師批改作業(yè),檢查學(xué)生本節(jié)課的學(xué)習(xí)效果,從中發(fā)現(xiàn)問題,及時調(diào)整教學(xué)策略。

必做題:教材第22頁第1、2、3題

選做題:教材第23頁第6題

五、板書設(shè)計:

(略)

八年級上冊數(shù)學(xué)教案最新篇15

教學(xué)建議

知識結(jié)構(gòu)

重難點分析

本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

教法建議

1.對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

教學(xué)設(shè)計示例

一、教學(xué)目標

1.掌握中位線的概念和三角形中位線定理

2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學(xué)生的計算能力

4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

5.通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣

二、教學(xué)設(shè)計

畫圖測量,猜想討論,啟發(fā)引導(dǎo).

三、重點、難點

1.教學(xué)重點:三角形中位線的概論與三角形中位線性質(zhì).

2.教學(xué)難點:三角形中位線定理的證明.

四、課時安排

1課時

五、教具學(xué)具準備

投影儀、膠片、常用畫圖工具

六、教學(xué)步驟

【復(fù)習(xí)提問】

1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

2.說明定理的證明思路.

3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明?

分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證,只要即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

【引入新課】

1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.

(結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在中,畫出中線、中位線)

2.三角形中位線性質(zhì)

了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

如圖所示,DE是的一條中位線,如果過D作,交AC于,那么根據(jù)平行線等分線段定理推論2,得是AC的中點,可見與DE重合,所以.由此得到:三角形中位線平行于第三邊.同樣,過D作,且DEFC,所以DE.因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的.方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

(l)延長DE到F,使,連結(jié)CF,由可得ADFC.

(2)延長DE到F,使,利用對角線互相平分的四邊形是平行四邊形,可得ADFC.

(3)過點C作,與DE延長線交于F,通過證可得ADFC.

上面通過三種不同方法得出ADFC,再由得BDFC,所以四邊形DBCF是平行四邊形,DFBC,又因DE,所以DE.

(證明過程略)

例求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.

(由學(xué)生根據(jù)命題,說出已知、求證)

已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

求證:四邊形EFGH是平行四邊形.‘

分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

證明:連結(jié)AC.

∴(三角形中位線定理).

同理,

∴GHEF

∴四邊形EFGH是平行四邊形.

【小結(jié)】

1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

2.三角形中位線定理及證明思路.

七、布置作業(yè)

教材P188中1(2)、4、7

1547961