高中數(shù)學(xué)教案必修1
高中數(shù)學(xué)教案必修1模板
過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力。一起看看高中數(shù)學(xué)教案必修1!歡迎查閱!
高中數(shù)學(xué)教案必修1 一
一、說課分析
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實(shí)的概念和圖象基礎(chǔ),又因?yàn)椤吨笖?shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點(diǎn)內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實(shí)意義。本節(jié)內(nèi)容的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2.教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運(yùn)動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點(diǎn)來認(rèn)識函數(shù)。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問題;
(2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標(biāo):①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。
(4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、說課設(shè)計
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:
1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個實(shí)例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2.強(qiáng)化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實(shí)例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2.領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。
3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
4.注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。
四、程序設(shè)計
在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設(shè)情景、導(dǎo)入新課
教師活動:①用電腦展示兩個實(shí)例,第一個是計算機(jī)價格下降問題,第二個是生物中細(xì)胞的例子,②將學(xué)生按奇數(shù)列、偶數(shù)列分組。
學(xué)生活動:①分別寫出計算機(jī)價格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個數(shù)y與次數(shù)x的關(guān)系式,并互相交流;②回憶指數(shù)的概念;③歸納指數(shù)函數(shù)的概念;④分析出對指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
設(shè)計意圖:通過生活實(shí)例激發(fā)學(xué)生的學(xué)習(xí)動機(jī),,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點(diǎn)做好準(zhǔn)備;
2.啟發(fā)誘導(dǎo)、探求新知
教師活動:①給出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象②在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質(zhì)。
學(xué)生活動:①畫出兩個簡單的指數(shù)函數(shù)圖象②交流、討論③歸納出研究函數(shù)性質(zhì)涉及的方面④總結(jié)出指數(shù)函數(shù)的性質(zhì)。
設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達(dá)到進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會很自然的通過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:①板書例1②板書例2第一問③介紹有關(guān)考古的拓展知識。
高中數(shù)學(xué)教案必修1 二
一、說教材
1.從在教材中的地位與作用來看
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).
2.從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.
公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說目標(biāo)
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).
三、說過程
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計了如下的教學(xué)過程:
1.創(chuàng)設(shè)情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚.為什么呢?
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù).帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設(shè)計意圖:在實(shí)際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.
3.類比聯(lián)想,解決問題
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo).
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ).)
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
高中數(shù)學(xué)教案必修1 三
一、教學(xué)目標(biāo)
1 知識與技能
〈1〉結(jié)合函數(shù)圖象,了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件
〈2〉理解函數(shù)極值的概念,會用導(dǎo)數(shù)求函數(shù)的極大值與極小值
2 過程與方法
結(jié)合實(shí)例,借助函數(shù)圖形直觀感知,并探索函數(shù)的極值與導(dǎo)數(shù)的關(guān)系。
3 情感與價值
感受導(dǎo)數(shù)在研究函數(shù)性質(zhì)中一般性和有效性,通過學(xué)習(xí)讓學(xué)生體會極值是函數(shù)的局部性質(zhì),增強(qiáng)學(xué)生數(shù)形結(jié)合的思維意識。
二、重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的極值
難點(diǎn):函數(shù)在某點(diǎn)取得極值的必要條件與充分條件
三、教學(xué)基本流程
回憶函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,與已有知識的聯(lián)系
提出問題,激發(fā)求知欲
組織學(xué)生自主探索,獲得函數(shù)的極值定義
通過例題和練習(xí),深化提高對函數(shù)的極值定義的理解
四、教學(xué)過程
〈一〉創(chuàng)設(shè)情景,導(dǎo)入新課
1、通過上節(jié)課的學(xué)習(xí),導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系是什么?
(提問C類學(xué)生回答,A,B類學(xué)生做補(bǔ)充)
函數(shù)的極值與導(dǎo)數(shù)教案 2、觀察圖1.3.8 表示高臺跳水運(yùn)動員的高度h隨時間t變化的函數(shù)函數(shù)的極值與導(dǎo)數(shù)教案=-4.9t2+6.5t+10的圖象,回答以下問題
函數(shù)的極值與導(dǎo)數(shù)教案函數(shù)的極值與導(dǎo)數(shù)教案函數(shù)的極值與導(dǎo)數(shù)教案函數(shù)的極值與導(dǎo)數(shù)教案
函數(shù)的極值與導(dǎo)數(shù)教案
函數(shù)的極值與導(dǎo)數(shù)教案函數(shù)的極值與導(dǎo)數(shù)教案
(1)當(dāng)t=a時,高臺跳水運(yùn)動員距水面的高度,那么函數(shù)函數(shù)的極值與導(dǎo)數(shù)教案在t=a處的導(dǎo)數(shù)是多少呢?
(2)在點(diǎn)t=a附近的圖象有什么特點(diǎn)?
(3)點(diǎn)t=a附近的導(dǎo)數(shù)符號有什么變化規(guī)律?
共同歸納: 函數(shù)h(t)在a點(diǎn)處h/(a)=0,在t=a的附近,當(dāng)t0;當(dāng)t>a時,函數(shù)函數(shù)的極值與導(dǎo)數(shù)教案單調(diào)遞減, 函數(shù)的極值與導(dǎo)數(shù)教案 <0,即當(dāng)t在a的附近從小到大經(jīng)過a時, 函數(shù)的極值與導(dǎo)數(shù)教案 先正后負(fù),且函數(shù)的極值與導(dǎo)數(shù)教案連續(xù)變化,于是h/(a)=0.
3、對于這一事例是這樣,對其他的連續(xù)函數(shù)是不是也有這種性質(zhì)呢?
<二>探索研討
函數(shù)的極值與導(dǎo)數(shù)教案1、觀察1.3.9圖所表示的y=f(x)的圖象,回答以下問題:
函數(shù)的極值與導(dǎo)數(shù)教案(1)函數(shù)y=f(x)在a.b點(diǎn)的函數(shù)值與這些點(diǎn)附近的函數(shù)值有什么關(guān)系?
(2) 函數(shù)y=f(x)在a.b.點(diǎn)的導(dǎo)數(shù)值是多少?
(3)在a.b點(diǎn)附近, y=f(x)的導(dǎo)數(shù)的符號分別是什么,并且有什么關(guān)系呢?
2、極值的定義:
我們把點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),f(a)叫做函數(shù)y=f(x)的極小值;
點(diǎn)b叫做函數(shù)y=f(x)的極大值點(diǎn),f(a)叫做函數(shù)y=f(x)的極大值。
極大值點(diǎn)與極小值點(diǎn)稱為極值點(diǎn), 極大值與極小值稱為極值.
3、通過以上探索,你能歸納出可導(dǎo)函數(shù)在某點(diǎn)x0取得極值的充要條件嗎?
充要條件:f(x0)=0且點(diǎn)x0的左右附近的導(dǎo)數(shù)值符號要相反
4、引導(dǎo)學(xué)生觀察圖1.3.11,回答以下問題:
(1)找出圖中的極點(diǎn),并說明哪些點(diǎn)為極大值點(diǎn),哪些點(diǎn)為極小值點(diǎn)?
(2)極大值一定大于極小值嗎?
5、隨堂練習(xí):
如圖是函數(shù)y=f(x)的函數(shù),試找出函數(shù)y=f(x)的極值點(diǎn),并指出哪些是極大值點(diǎn),哪些是極小值點(diǎn).如果把函數(shù)圖象改為導(dǎo)函數(shù)y=函數(shù)的極值與導(dǎo)數(shù)教案的圖象?
函數(shù)的極值與導(dǎo)數(shù)教案<三>講解例題
例4 求函數(shù)函數(shù)的極值與導(dǎo)數(shù)教案的極值
教師分析:①求f/(x),解出f/(x)=0,找函數(shù)極點(diǎn); ②由函數(shù)單調(diào)性確定在極點(diǎn)x0附近f/(x)的符號,從而確定哪一點(diǎn)是極大值點(diǎn),哪一點(diǎn)為極小值點(diǎn),從而求出函數(shù)的極值.
學(xué)生動手做,教師引導(dǎo)
解:∵函數(shù)的極值與導(dǎo)數(shù)教案∴函數(shù)的極值與導(dǎo)數(shù)教案=x2-4=(x-2)(x+2)令函數(shù)的極值與導(dǎo)數(shù)教案=0,解得x=2,或x=-2.
函數(shù)的極值與導(dǎo)數(shù)教案
函數(shù)的極值與導(dǎo)數(shù)教案
下面分兩種情況討論:
(1) 當(dāng)函數(shù)的極值與導(dǎo)數(shù)教案>0,即x>2,或x<-2時;
(2) 當(dāng)函數(shù)的極值與導(dǎo)數(shù)教案<0,即-2<x<2時.< p="">
當(dāng)x變化時, 函數(shù)的極值與導(dǎo)數(shù)教案 ,f(x)的變化情況如下表:
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
函數(shù)的極值與導(dǎo)數(shù)教案
+
0
_
0
+
f(x)
單調(diào)遞增
函數(shù)的極值與導(dǎo)數(shù)教案
函數(shù)的極值與導(dǎo)數(shù)教案單調(diào)遞減
函數(shù)的極值與導(dǎo)數(shù)教案
單調(diào)遞增
函數(shù)的極值與導(dǎo)數(shù)教案因此,當(dāng)x=-2時,f(x)有極大值,且極大值為f(-2)= 函數(shù)的極值與導(dǎo)數(shù)教案 ;當(dāng)x=2時,f(x)有極
小值,且極小值為f(2)= 函數(shù)的極值與導(dǎo)數(shù)教案
函數(shù)函數(shù)的極值與導(dǎo)數(shù)教案的圖象如:
函數(shù)的極值與導(dǎo)數(shù)教案歸納:求函數(shù)y=f(x)極值的方法是:
函數(shù)的極值與導(dǎo)數(shù)教案1求函數(shù)的極值與導(dǎo)數(shù)教案,解方程函數(shù)的極值與導(dǎo)數(shù)教案=0,當(dāng)函數(shù)的極值與導(dǎo)數(shù)教案=0時:
(1) 如果在x0附近的左邊函數(shù)的極值與導(dǎo)數(shù)教案>0,右邊函數(shù)的極值與導(dǎo)數(shù)教案<0,那么f(x0)是極大值.
(2) 如果在x0附近的左邊函數(shù)的極值與導(dǎo)數(shù)教案<0,右邊函數(shù)的極值與導(dǎo)數(shù)教案>0,那么f(x0)是極小值
<四>課堂練習(xí)
1、求函數(shù)f(x)=3x-x3的極值
2、思考:已知函數(shù)f(x)=ax3+bx2-2x在x=-2,x=1處取得極值,
求函數(shù)f(x)的解析式及單調(diào)區(qū)間。
C類學(xué)生做第1題,A,B類學(xué)生在第1,2題。
<五>課后思考題
1、若函數(shù)f(x)=x3-3bx+3b在(0,1)內(nèi)有極小值,求實(shí)數(shù)b的范圍。
2、已知f(x)=x3+ax2+(a+b)x+1有極大值和極小值,求實(shí)數(shù)a的范圍。
<六>課堂小結(jié)
1、函數(shù)極值的定義
2、函數(shù)極值求解步驟
3、一個點(diǎn)為函數(shù)的極值點(diǎn)的充要條件。
<七>作業(yè) P32 5 ① ④
教學(xué)反思
本節(jié)的教學(xué)內(nèi)容是導(dǎo)數(shù)的極值,有了上節(jié)課導(dǎo)數(shù)的單調(diào)性作鋪墊,借助函數(shù)圖形的直觀性探索歸納出導(dǎo)數(shù)的極值定義,利用定義求函數(shù)的極值.教學(xué)反饋中主要是書寫格式存在著問題.為了統(tǒng)一要求主張用列表的方式表示,剛開始學(xué)生都不愿接受這種格式,但隨著幾道例題與練習(xí)題的展示,學(xué)生體會到列表方式的簡便,同時為能夠快速判斷導(dǎo)數(shù)的正負(fù),我要求學(xué)生盡量把導(dǎo)數(shù)因式分解.本節(jié)課的難點(diǎn)是函數(shù)在某點(diǎn)取得極值的必要條件與充分條件,為了說明這一點(diǎn)多舉幾個例題是很有必要的.在解答過程中學(xué)生還暴露出對復(fù)雜函數(shù)的求導(dǎo)的準(zhǔn)確率比較底,以及求函數(shù)的極值的過程板書仍不規(guī)范,看樣子這些方面還要不斷加強(qiáng)訓(xùn)練函數(shù)的極值與導(dǎo)數(shù)教案
研討評議
教學(xué)內(nèi)容整體設(shè)計合理,重點(diǎn)突出,難點(diǎn)突破,充分體現(xiàn)教師為主導(dǎo),學(xué)生為主體的雙主體課堂地位,充分調(diào)動學(xué)生的積極性,教師合理清晰的引導(dǎo)思路,使學(xué)生的數(shù)學(xué)思維得到培養(yǎng)和提高,教學(xué)內(nèi)容容量與難度適中,符合學(xué)情,并關(guān)注學(xué)生的個體差異,使不同程度的學(xué)生都得到不同效果的收獲。
高中數(shù)學(xué)教案必修1相關(guān)文章:
★ 關(guān)于高中必修1數(shù)學(xué)教案優(yōu)秀范文合集大全
★ 高一年級數(shù)學(xué)必修1知識點(diǎn)整理