高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)
等比數(shù)列是高一數(shù)學(xué)學(xué)習(xí)的內(nèi)容,學(xué)習(xí)數(shù)學(xué)需要講究方法和技巧,更要學(xué)會(huì)對(duì)知識(shí)點(diǎn)進(jìn)行歸納整理。下面就是小編給大家?guī)淼?strong>高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn),希望大家喜歡!
高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)
1.等比中項(xiàng)
如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。
有關(guān)系:
注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。
2.等比數(shù)列通項(xiàng)公式
an=a1q’(n-1)(其中首項(xiàng)是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n項(xiàng)和
當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
Sn=a1(1-q’n)/(1-q)=(a1-a1q’n)/(1-q)(q≠1)
當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
Sn=na1
3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比數(shù)列性質(zhì)
(1)若m、n、p、q∈N,且m+n=p+q,則am·an=ap·aq;
(2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
(5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)
(7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)
1、ac?b2是a,b,c成等比數(shù)列的( )
A.充分條件 B.必要條件
C.充要條件 D.既不充分也不必要條件
2a?b2、已知a,b,c,d是公比為2的等比數(shù)列,則等于( ) 2c?d
111A.1 B. C. D. 248
3、已知{an}是等比數(shù)列,且an?0,a2?a4?2a3?a5?a4?a6?25,那么a3?a5 的值是( )
A.5 B.6 C.7 D.25
4、在等比數(shù)列{an}中,已知a1?,a4?3,則該數(shù)列前5項(xiàng)的積為( ) 9
A.?1 B.3 C.1 D.?3
5、?ABC的三邊a,b,c既成等比數(shù)列又成等差數(shù)列,則三角形的形狀是( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等邊三角形
高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)相關(guān)文章:
高一數(shù)學(xué)等比數(shù)列知識(shí)點(diǎn)




