高一數學教案分享5篇
俗話說的好,好的教學計劃是教學成功的一半,作為一名優(yōu)異的教師,做好一定的教學計劃很有必要。下面就是小編給大家?guī)淼母咭粩祵W教案,希望能幫助到大家!
高一數學教案1
一、教學思想: 使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下?! ?.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發(fā)現和創(chuàng)造的歷程?! ?.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力?! ?.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發(fā)展獨立獲取數學知識的能力?! ?.發(fā)展數學應用意識和創(chuàng)新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷?! ?.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。 6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀?! 《⒔滩奶攸c: 我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點: 1.親和力:以生動活潑的呈現方式,激發(fā)興趣和美感,引發(fā)學習激情?! ?.問題性:以恰時恰點的問題引導數學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神?! ?.科學性與思想性:通過不同數學內容的聯(lián)系與啟發(fā),強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。 4.時代性與應用性:以具有時代性和現實感的素材創(chuàng)設情境,加強數學活動,發(fā)展應用意識?! ∪⒔谭ǚ治觯骸 ?. 選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。 2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式?! ?. 在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。 四、學情分析: 兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點?! ∥?、教學措施: 1、激發(fā)學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。 2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。 3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育?! ?、抓住公式的推導和內在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。 5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內容選擇不同教法?! ?、重視數學應用意識及應用能力的培養(yǎng)。
高一數學教案2
一、教材分析
1.教學內容
本節(jié)課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2.教材的地位和作用
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節(jié)內容不僅為今后的函數學習打下理論基礎,還有利于培養(yǎng)學生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念.
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發(fā),講清楚概念的形成過程.
4.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當的問題情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強.
二、目標分析
(一)知識目標:
1.知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區(qū)間的概念,并能根據函數圖象說出函數的單調區(qū)間。
2.能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養(yǎng)學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯(lián)系,增強學生對知識的主動構建的能力。
3.情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知_領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
(二)過程與方法
培養(yǎng)學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發(fā)學生學習興趣,培養(yǎng)學生發(fā)現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1.教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發(fā)揮多媒體教學的優(yōu)勢。本節(jié)課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發(fā)現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2.學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節(jié)課學生學習的主要方式。
四、過程分析
本節(jié)課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業(yè)六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發(fā)學生的學習興趣,本節(jié)課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發(fā)學生的學習興趣和求知_為學習函數的單調性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節(jié)課所創(chuàng)設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
(二)函數單調性的定義引入
1.幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,,的圖象的動態(tài)形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區(qū)間內當x的值增大時,函數值y也增大,到圖象在該區(qū)間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:通過學生熟悉的知識引入新課題,有利于激發(fā)學生的學習興趣和學習熱情,同時也可以培養(yǎng)學生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。通過學生已學過的一次y=2x+4,,的圖象的動態(tài)形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。從學生的原有認知結構入手,探討單調性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1)
注意:(1)函數的單調性也叫函數的增減性;
(2)注意區(qū)間上所取兩點x1,x2的任意性;
(3)函數的單調性是對某個區(qū)間而言的,它是一個局部概念。
讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區(qū)間的概念。
設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數在某個區(qū)間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。
(四)例題分析
在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。
2.例2.證明函數在區(qū)間(-∞,+∞)上是減函數。
在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。
變式一:函數f(x)=-3x+b在R上是減函數嗎?為什么?
變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
錯誤:實質上并沒有證明,而是使用了所要證明的結論
例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區(qū)間這一概念的再認識;要了解函數在某一區(qū)間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規(guī)范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規(guī)范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。
(五)鞏固與探究
1.教材p36練習2,3
2.探究:二次函數的單調性有什么規(guī)律?
(幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。
設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現和解決問題的一種常用數學方法。
通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。
(六)回顧總結
通過師生互動,回顧本節(jié)課的概念、方法。本節(jié)課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區(qū)間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。
設計意圖:通過小結突出本節(jié)課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。
(七)課外作業(yè)
1.教材p43習題1.3A組1(單調區(qū)間),2(證明單調性);
2.判斷并證明函數在上的單調性。
3.數學日記:談談你本節(jié)課中的收獲或者困惑,整理你認為本節(jié)課中的最重要的知識和方法。
設計意圖:通過作業(yè)1、2進一步鞏固本節(jié)課所學的增、減函數的概念,強化基本技能訓練和解題規(guī)范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現。
(七)板書設計(見ppt)
五、評價分析
有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了:第一.教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發(fā)展區(qū)”;第三.強化了重探究、重交流、重過程的課改理念。讓學生經歷“創(chuàng)設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發(fā)生、發(fā)展過程,培養(yǎng)“用數學”的意識和能力,成為積極主動的建構者。
本節(jié)課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發(fā)生和形成過程,使學生始終處于問題探索研究狀態(tài)之中,_趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。
高一數學教案3
一、設計思路
指導思想
數學是一門具有嚴密推理能力和抽象概括能力的學科。本課以發(fā)展學生思維能力為核心,以學生發(fā)展為本,從本班學生的實際出發(fā),培養(yǎng)學生觀察能力,探究能力和抽象概括能力。
教材分析
本節(jié)課是學生在已知函數概念,并且已經掌握了函數的一般性質和簡單的對數運算性質的基礎上,進一步研究一類具體函數——對數函數,深化學生對函數概念的理解與認識,使學生得到較系統(tǒng)的函數知識和研究函數的方法,同時也為今后進一步學習函數的知識打下堅實的基礎。因此,本節(jié)課的內容十分重要,它對知識起到了承上啟下的作用。
教學目標
1、知識目標:理解對數函數的定義,掌握對數函數的圖像、性質及其簡單應用
2、能力目標:通過教學培養(yǎng)學生觀察、分析、歸納等思維能力,體會數形結合和分類討論思想,以及從特殊到一般等學習數學的方法,并體會數形結合思想
3、情感目標:通過學習,學會認識事物的特殊性與一般性之間的關系,構建和諧的課堂氛圍,培養(yǎng)學生勇于提問,善于探索的思維品質。
教學重點
通過對對數函數圖像的的探究,得出的對數函數圖像及其性質,以及圖像和性質的簡單應用,是本節(jié)課的重點。
教學難點
1.底數a的變化對對數函數圖像及性質的有較大的影響,是本節(jié)課的一大難點。
2.底數不同時,如何比較兩個對數的大小是本節(jié)課的又一個難點
教學準備
1、認真研究教材,與同課頭老師探討教學思路,聽取有經驗老師的意見!。
2、精心制作PPT課件和幾何畫板課件輔助教學。
3、安排學生預習。
教學過程設計
一.復習提問,引入新課
師:對數函數的概念?定義域是什么?
生:一般地,函數,(a>0且a≠1)叫做對數函數,其中定義域是(0,+∞)
師:對數的運算性質有哪些?
生:(1);
(2);
(3).
(4)對數的換底公式
(,且,,且,)
設計思路:從對數函數概念以及對運算性質引出課題,尋找學習最近發(fā)展區(qū),為后面研究對數函數的圖象和性質埋下了伏筆。
二.性質探究
1.探究一:對數函數的圖像
操作1:同指數函數一樣,在學習了函數定義之后,我們要畫函數的圖象。
在同一坐標系內畫出函數和的圖象。
師:畫函數都有哪些步驟呢?
生:列表、描點、連線。
(學生動手畫圖后,教師利用多媒體演示畫圖過程)
操作2:繼續(xù)在同一坐標系中,畫出下列函數圖像
設計思路:通過描點法在同一坐標畫出不同底數函數的圖像,既有利于培養(yǎng)學生的動手能力,又有利于學生感知對數函數的圖像的變化規(guī)律。
2.探究二
師:老師布置學習任務和組織學生探究:
請各小組根據同一坐標系中所畫底數不同時對數函數的圖像,歸納總結出對數函數具有哪些性質?最終請各小組派代表起來匯報本小組的探究結果。
生:各小組積極探討,把發(fā)現的性質歸納總結,記錄下來。其中重點包含(但不限于)如下內容:
v定義域與值域分別是什么
v當底數a變化時,對數函數圖像如何變化?
v經過哪個定點?
vy=logax與y=圖像有什么關系
v函數的單調性?
v函數的奇偶性?
v函數值何時取正值,何時取負值?
設計思路:小組探究,有利于培養(yǎng)學生合作意識和團隊精神;開放式的探究,更有利于培養(yǎng)學生觀察能力以及發(fā)現問題,提出問題能力。
三.成果展示
師:教師輪流要求各小組派代表展示本組所發(fā)現對數函數的所有性質,其它隊員可以補充,并對學生的精彩回答加以肯定;如果發(fā)現了新問題,鼓勵學生繼續(xù)討論。
高一數學教案4
教學目標
1.使學生掌握指數函數的概念,圖象和性質.
(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域.
(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質.
(3)能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如
的圖象.
2.通過對指數函數的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.
3.通過對指數函數的研究,讓學生認識到數學的應用價值,激發(fā)學生學習數學的興趣.使學生善于從現實生活中數學的發(fā)現問題,解決問題.
教學建議
教材分析
(1)指數函數是在學生系統(tǒng)學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究.
(2)本節(jié)的教學重點是在理解指數函數定義的基礎上掌握指數函數的圖象和性質.難點是對底數
在
和
時,函數值變化情況的區(qū)分.
(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.
教法建議
(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是
的樣子,不能有一點差異,諸如
等都不是指數函數.
(2)對底數
的限制條件的理解與認識也是認識指數函數的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.
關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
高一數學教案5
教學目的:
(1)使學生初步理解集合的概念,知道常用數集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示
一些簡單的集合
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
內容分析:
1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯(lián)系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯
本節(jié)首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學習全章的引言和集合的基本概念學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義本節(jié)課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明
教學過程:
一、復習引入:
1.簡介數集的發(fā)展,復習公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合記作N,
(2)正整數集:非負整數集內排除0的集記作N_N+
(3)整數集:全體整數的集合記作Z,
(4)有理數集:全體有理數的集合記作Q,
(5)實數集:全體實數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括
數0
(2)非負整數集內排除0的集記作N_N+Q、Z、R等其它
數集內排除0的集,也是這樣表示,例如,整數集內排除0
的集,表示成Z
_
、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,
或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__
4、由實數x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素(B)3個元素(C)4個元素(D)5個元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
(1)當x∈N時,x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
則x=x+0_a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整數,
∴=不一定屬于集合G
四、小結:本節(jié)課學習了以下內容:
1.集合的有關概念:(集合、元素、屬于、不屬于)
2.集合元素的性質:確定性,互異性,無序性
3.常用數集的定義及記法
五、課后作業(yè):
六、板書設計(略)
七、課后記:
高一數學教案分享5篇相關文章:
高一數學教案分享5篇




