數(shù)學(xué)高三上冊教案范例
高三每個人都有無盡的潛力,每一個人都有無窮的提升空間,不經(jīng)過一年血戰(zhàn),也許我們永遠(yuǎn)發(fā)現(xiàn)不了自己身上蘊藏的能量。以下是小編整理的數(shù)學(xué)高三上冊教案范例,希望可以提供給大家進行參考和借鑒。
數(shù)學(xué)高三上冊教案范例篇1
【教學(xué)目標(biāo)】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點】
教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
【教學(xué)過程】
1.情景導(dǎo)入
教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2.展示目標(biāo)、檢查預(yù)習(xí)
3.合作探究、交流展示
(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。有兩個面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
(5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5.典型例題
例:判斷下列語句是否正確。
⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案AB
6.課堂檢測:
課本P8,習(xí)題1.1A組第1題。
7.歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
數(shù)學(xué)高三上冊教案范例篇2
一、教學(xué)目標(biāo)
1、知識與技能
(1)理解對數(shù)的概念,了解對數(shù)與指數(shù)的關(guān)系;
(2)能夠進行指數(shù)式與對數(shù)式的互化;
(3)理解對數(shù)的性質(zhì),掌握以上知識并培養(yǎng)類比、分析、歸納能力;
2、過程與方法
3、情感態(tài)度與價值觀
(1)通過本節(jié)的學(xué)習(xí)體驗數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)細(xì)心觀察、認(rèn)真分析嚴(yán)謹(jǐn)認(rèn)真的良好思維習(xí)慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認(rèn)知過程;
(3)體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)直覺觀察、
探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)、
二、教學(xué)重點、難點
教學(xué)重點
(1)對數(shù)的'定義;
(2)指數(shù)式與對數(shù)式的互化;
教學(xué)難點
(1)對數(shù)概念的理解;
(2)對數(shù)性質(zhì)的理解;
三、教學(xué)過程:
四、歸納總結(jié):
1、對數(shù)的概念
一般地,如果函數(shù)ax=n(a0且a≠1)那么數(shù)x叫做以a為底n的對數(shù),記作x=logan,其中a叫做對數(shù)的底數(shù),n叫做真數(shù)。
2、對數(shù)與指數(shù)的互化
ab=n?logan=b
3、對數(shù)的基本性質(zhì)
負(fù)數(shù)和零沒有對數(shù);loga1=0;logaa=1對數(shù)恒等式:alogan=n;logaa=nn
五、課后作業(yè)
課后練習(xí)1、2、3、4
數(shù)學(xué)高三上冊教案范例篇3
教學(xué)目標(biāo)
(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結(jié)論;
(2)能結(jié)合樹形圖來幫助理解加法原理與乘法原理;
(3)正確區(qū)分加法原理與乘法原理,哪一個原理與分類有關(guān),哪一個原理與分步有關(guān);
(4)能應(yīng)用加法原理與乘法原理解決一些簡單的應(yīng)用問題,提高學(xué)生理解和運用兩個原理的能力;
(5)通過對加法原理與乘法原理的學(xué)習(xí),培養(yǎng)學(xué)生周密思考、細(xì)心分析的良好習(xí)慣。
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點難點分析
本節(jié)的重點是加法原理與乘法原理,難點是準(zhǔn)確區(qū)分加法原理與乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個原理是學(xué)習(xí)排列組合內(nèi)容的基礎(chǔ),貫穿整個內(nèi)容之中,一方面它是推導(dǎo)排列數(shù)與組合數(shù)的基礎(chǔ);另一方面它的結(jié)論與其思想在方法本身又在解題時有許多直接應(yīng)用。
兩個原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問題,其區(qū)別在于:運用加法原理的前提條件是,做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說,完成這件事的各種方法是相互獨立的;運用乘法原理的前提條件是,做一件事有n個驟,只要在每個步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說,完成這件事的各個步驟是相互依存的。簡單的說,如果完成一件事情的所有方法是屬于分類的問題,每次得到的是最后結(jié)果,要用加法原理;如果完成一件事情的方法是屬于分步的問題,每次得到的該步結(jié)果,就要用乘法原理。
三、教法建議
關(guān)于兩個計數(shù)原理的教學(xué)要分三個層次:
第一是對兩個計數(shù)原理的認(rèn)識與理解.這里要求學(xué)生理解兩個計數(shù)原理的意義,并弄清兩個計數(shù)原理的區(qū)別.知道什么情況下使用加法計數(shù)原理,什么情況下使用乘法計數(shù)原理.(建議利用一課時).
第二是對兩個計數(shù)原理的使用.可以讓學(xué)生做一下習(xí)題(建議利用兩課時):
①用0,1,2,……,9可以組成多少個8位號碼;
②用0,1,2,……,9可以組成多少個8位整數(shù);
③用0,1,2,……,9可以組成多少個無重復(fù)數(shù)字的4位整數(shù);
④用0,1,2,……,9可以組成多少個有重復(fù)數(shù)字的4位整數(shù);
⑤用0,1,2,……,9可以組成多少個無重復(fù)數(shù)字的4位奇數(shù);
⑥用0,1,2,……,9可以組成多少個有兩個重復(fù)數(shù)字的4位整數(shù)等等.
第三是使學(xué)生掌握兩個計數(shù)原理的綜合應(yīng)用,這個過程應(yīng)該貫徹整個教學(xué)中,每個排列數(shù)、組合數(shù)公式及性質(zhì)的推導(dǎo)都要用兩個計數(shù)原理,每一道排列、組合問題都可以直接利用兩個原理求解,另外直接計算法、間接計算法都是兩個原理的一種體現(xiàn).教師要引導(dǎo)學(xué)生認(rèn)真地分析題意,恰當(dāng)?shù)姆诸悺⒎植?,用好、用活兩個基本計數(shù)原理.
數(shù)學(xué)高三上冊教案范例篇4
【教學(xué)目的】
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
(3)使學(xué)生初步了解有限集、無限集、空集的意義
【重點難點】
教學(xué)重點:集合的基本概念及表示方法
教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
【內(nèi)容分析】
集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點是集合的基本概念
集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認(rèn)識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明。
數(shù)學(xué)高三上冊教案范例篇5
教學(xué)目標(biāo)
進一步熟悉正、余弦定理內(nèi)容,能熟練運用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式.
教學(xué)重難點
教學(xué)重點:熟練運用定理.
教學(xué)難點:應(yīng)用正、余弦定理進行邊角關(guān)系的相互轉(zhuǎn)化.
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備:
1.寫出正弦定理、余弦定理及推論等公式.
2.討論各公式所求解的三角形類型.
二、講授新課:
1.教學(xué)三角形的解的討論:
①出示例1:在△ABC中,已知下列條件,解三角形.
分兩組練習(xí)→討論:解的個數(shù)情況為何會發(fā)生變化?
②用如下圖示分析解的情況.(A為銳角時)
②練習(xí):在△ABC中,已知下列條件,判斷三角形的解的情況.
2.教學(xué)正弦定理與余弦定理的活用:
①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.
分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.
分析:由三角形的什么知識可以判別?→求角余弦,由符號進行判斷
③出示例4:已知△ABC中,試判斷△ABC的形狀.
分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?
3.小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化.